370 research outputs found
Relating color discrimination to photopigment genes in deutan observers
AbstractDeutan observers are a heterogeneous group, varying nearly continuously from deuteranomalous trichromats with fine chromatic discrimination in the red/green range to deuteranopes who have none. We sought to relate chromatic discriminative ability among deutans measured psychophysically (phenotypes) to observers' separation between long-wave visual pigments inferred from visual pigment genes (genotypes). If middle-wave pigment genes are assumed not to be expressed in these deutan observers there is a clear relation between phenotype and genotype
Effects of color-enhancing glasses on color vision in congenital red-green color deficiencies
As commercially available glasses for color vision deficiency (CVD) are classified as low risk, they are not subject to stringent marketing regulations. We investigate how EnChroma and VINO glasses affect performance on the Colour Assessment and Diagnosis (CAD) test in individuals with CVD. Data were obtained from 51 individuals with red-green CVD. Blood or saliva samples were collected to examine the structure of the OPN1LW/OPN1MW array. Individuals completed the CAD test twice without glasses and once with each pair of glasses. Although there was a statistically significant effect of both glasses, only that of VINO could be considered functionally meaningful
Comparing retinal structure in patients with achromatopsia and blue cone monochromacy using optical coherence tomography
PURPOSE:
To compare foveal hypoplasia and the appearance of the ellipsoid zone (EZ) at the fovea in patients with genetically confirmed achromatopsia (ACHM) and blue cone monochromacy (BCM).
DESIGN:
Retrospective, multi-center observational study.
SUBJECTS:
Molecularly confirmed patients with ACHM (n = 89) and BCM (n = 33).
METHODS:
We analyzed high-resolution spectral domain optical coherence tomography (SD-OCT) images of the macula from aforementioned patients with BCM. Three observers independently graded SD-OCT images for foveal hypoplasia (i.e. retention of one or more inner retinal layers at the fovea) and four observers judged the integrity of the EZ at the fovea, based on an established grading scheme. These measures were compared with previously published data from the ACHM patients.
MAIN OUTCOME MEASURES:
Presence of foveal hypoplasia and EZ grade.
RESULTS:
Foveal hypoplasia was significantly more prevalent in ACHM than in BCM (p<0.001). In addition, we observed a significant difference in the distribution of EZ grades between ACHM and BCM, with grade II EZ being by far the most common phenotype in BCM (61% of patients). In contrast, ACHM patients had a relatively equal prevalence of EZ grades I, II, and IV. Interestingly, grade IV EZ was 2.6 times more prevalent in ACHM compared to BCM, while grade V EZ (macular atrophy) was present in 3% of both the ACHM and BCM cohorts.
CONCLUSIONS:
The higher incidence of foveal hypoplasia in ACHM than BCM supports a role for cone activity in foveal development. Although there are differences in EZ grades between these conditions, the degree of overlap suggests EZ grade is not sufficient for definitive diagnosis, in contrast to previous reports. Analysis of additional OCT features in similar cohorts may reveal differences with greater diagnostic value. Finally, the extent to which foveal hypoplasia or EZ grade is prognostic for therapeutic potential in either group remains to be seen, but motivates further study
Recommended from our members
A study of unusual Rayleigh matches in deutan deficiency
Rayleigh match data were modeled with the aim of explaining the locations of match midpoints and matching ranges, both in normal trichromats and in subjects with congenital color deficiency. Model parameters included the wavelength of peak sensitivity of cone photopigments, the effective photopigment optical density, and the noise amplitude in the red-green color channel. In order to avoid the suprathreshold, perceptual effects of extreme L:M cone ratios on color vision, selective post-receptoral amplification of cone signals is needed. The associated noise is also amplified and this causes corresponding changes in red-green threshold sensitivity. We propose that the noise amplitude and hence the size of the matching range in normal trichromats relates to the known inter-subject variation in the relative numbers of L and M cones. If this hypothesis can be shown to account for the extremes of the red-green matching range measured in normal trichromats, it is of interest to establish the extent to which it also predicts the unexpected, small matching ranges that are observed in some subjects with red-green color deficiency. A subset of subjects with deutan deficiency that exhibited less common Nagel matches were selected for genetic analysis of their cone pigment genes in order to confirm the type of deficiency, and to predict the corresponding peak wavelength separation (δλmax) of their two, long-wavelength cone pigments. The Rayleigh match model predicted accurately the midpoint and the range for the spectral differences specified by the genes. The prediction also required plausible selection of effective optical density of the cone pigments and noise. The noise needed varied, but the estimates were confined to lie within the limits established from the matching ranges measured in normal trichromats. The model predicts correctly the small matching ranges measured in some deuteranomalous subjects, principally accounted for by a low estimate of noise level in the red-green channel. The model also predicts the “normal” matches made by some subjects that rely on two hybrid genes and therefore exhibit red-green thresholds outside the normal range, typical of mild deuteranomaly
The Effect of Cone Opsin Mutations on Retinal Structure and the Integrity of the Photoreceptor Mosaic
Purpose.
To evaluate retinal structure and photoreceptor mosaic integrity in subjects with OPN1LW and OPN1MW mutations.
Methods.
Eleven subjects were recruited, eight of whom have been previously described. Cone and rod density was measured using images of the photoreceptor mosaic obtained from an adaptive optics scanning light ophthalmoscope (AOSLO). Total retinal thickness, inner retinal thickness, and outer nuclear layer plus Henle fiber layer (ONL+HFL) thickness were measured using cross-sectional spectral-domain optical coherence tomography (SD-OCT) images. Molecular genetic analyses were performed to characterize the OPN1LW/OPN1MW gene array.
Results.
While disruptions in retinal lamination and cone mosaic structure were observed in all subjects, genotype-specific differences were also observed. For example, subjects with “L/M interchange” mutations resulting from intermixing of ancestral OPN1LW and OPN1MW genes had significant residual cone structure in the parafovea (∼25% of normal), despite widespread retinal disruption that included a large foveal lesion and thinning of the parafoveal inner retina. These subjects also reported a later-onset, progressive loss of visual function. In contrast, subjects with the C203R missense mutation presented with congenital blue cone monochromacy, with retinal lamination defects being restricted to the ONL+HFL and the degree of residual cone structure (8% of normal) being consistent with that expected for the S-cone submosaic.
Conclusions.
The photoreceptor phenotype associated with OPN1LW and OPN1MW mutations is highly variable. These findings have implications for the potential restoration of visual function in subjects with opsin mutations. Our study highlights the importance of high-resolution phenotyping to characterize cellular structure in inherited retinal disease; such information will be critical for selecting patients most likely to respond to therapeutic intervention and for establishing a baseline for evaluating treatment efficacy
Foveal Cone Structure in Patients With Blue Cone Monochromacy
Purpose: Blue cone monochromacy (BCM) is a rare inherited cone disorder in which both long- (L-) and middle- (M-) wavelength sensitive cone classes are either impaired or nonfunctional. Assessing genotype-phenotype relationships in BCM can improve our understanding of retinal development in the absence of functional L- and M-cones. Here we examined foveal cone structure in patients with genetically-confirmed BCM, using adaptive optics scanning light ophthalmoscopy (AOSLO). / Methods: Twenty-three male patients (aged 6-75 years) with genetically-confirmed BCM were recruited for high-resolution imaging. Eight patients had a deletion of the locus control region (LCR), and 15 had a missense mutation-Cys203Arg-affecting the first two genes in the opsin gene array. Foveal cone structure was assessed using confocal and non-confocal split-detection AOSLO across a 300 × 300 µm area, centered on the location of peak cell density. / Results: Only one of eight patients with LCR deletions and 10 of 15 patients with Cys203Arg mutations had analyzable images. Mean total cone density for Cys203Arg patients was 16,664 ± 11,513 cones/mm2 (n = 10), which is, on average, around 40% of normal. Waveguiding cone density was 2073 ± 963 cones/mm2 (n = 9), which was consistent with published histological estimates of S-cone density in the normal eye. The one patient with an LCR deletion had a total cone density of 10,246 cones/mm2 and waveguiding density of 1535 cones/mm2. / Conclusions: Our results show that BCM patients with LCR deletions and Cys203Arg mutations have a population of non-waveguiding photoreceptors, although the spectral identity and level of function remain unknown
Residual Cone Structure in Patients With X-Linked Cone Opsin Mutations
PURPOSE: To assess residual cone structure in subjects with mutations in exon 2, 3, and 4 of the OPN1LW or OPN1MW opsin. METHODS: Thirteen males had their OPN1LW/OPN1MW opsin genes characterized. The cone mosaic was imaged using both confocal and nonconfocal split-detection adaptive optics scanning light ophthalmoscopy (AOSLO), and retinal thickness was evaluated using optical coherence tomography (OCT). Six subjects completed serial imaging over a maximum period of 18 months and cone density was measured across imaging sessions. RESULTS: Ten subjects had an OPN1LW/OPN1MW "interchange" opsin mutation designated as LIAVA or LVAVA, which both introduce exon 3 splicing defects leading to a lack of functional photopigment in cones expressing LIAVA and greatly reduced functional photopigment in cones expressing LVAVA. Despite disrupted cone reflectivity and reduced numerosity, residual inner segments could be visualized. Similar patterns were observed in individuals with an exon 2 insertion, or an exon 4 splice defect, both of which are also expected to produce cones that are devoid of functional opsin protein. OCT revealed variably reduced retinal thickness. A significant inverse relationship was found between the proportion of waveguiding cones and axial length. CONCLUSIONS: Split-detection imaging revealed that the altered appearance of the cone mosaic in confocal images for subjects with exon 2, 3, and 4 mutations was generally due to disrupted waveguiding, rather than structural loss, making them possible candidates for gene therapy to restore cone function. The relative fraction of waveguiding cones was highly variable across subjects, which appears to influence emmetropization in these subjects
Cone Photoreceptor Structure in Patients With X-Linked Cone Dysfunction and Red-Green Color Vision Deficiency
Purpose: Mutations in the coding sequence of the L and M opsin genes are often associated with X-linked cone dysfunction (such as Bornholm Eye Disease, BED), though the exact color vision phenotype associated with these disorders is variable. We examined individuals with L/M opsin gene mutations to clarify the link between color vision deficiency and cone dysfunction. Methods: We recruited 17 males for imaging. The thickness and integrity of the photoreceptor layers were evaluated using spectral-domain optical coherence tomography. Cone density was measured using high-resolution images of the cone mosaic obtained with adaptive optics scanning light ophthalmoscopy. The L/M opsin gene array was characterized in 16 subjects, including at least one subject from each family. Results: There were six subjects with the LVAVA haplotype encoded by exon 3, seven with LIAVA, two with the Cys203Arg mutation encoded by exon 4, and two with a novel insertion in exon 2. Foveal cone structure and retinal thickness was disrupted to a variable degree, even among related individuals with the same L/M array. Conclusions: Our findings provide a direct link between disruption of the cone mosaic and L/M opsin variants. We hypothesize that, in addition to large phenotypic differences between different L/M opsin variants, the ratio of expression of first versus downstream genes in the L/M array contributes to phenotypic diversity. While the L/M opsin mutations underlie the cone dysfunction in all of the subjects tested, the color vision defect can be caused either by the same mutation or a gene rearrangement at the same locus
Impaired path integration in mice with disrupted grid cell firing
Path integration (PI) is a highly conserved, self-motion-based navigation strategy. Since the discovery of grid cells in the medial entorhinal cortex, neurophysiological data and computational models have suggested that these neurons serve PI. However, more direct empirical evidence supporting this hypothesis has been missing due to a lack of selective manipulations of grid cell activity and suitable behavioral assessments. Here we report that selective disruption of grid cell activity in mice can be achieved by removing NMDA glutamate receptors from the retro-hippocampal region and that disrupted grid cell firing accounts for impaired PI performance. Notably, the genetic manipulation did not affect the activity of other spatially selective cells in the medial entorhinal cortex and the hippocampus. By directly linking grid cell activity to PI, these results contribute to a better understanding of how grid cells support navigation and spatial memory
- …