3,452 research outputs found
Reflective Scattering and Unitarity
Interpretation of unitarity saturation as reflective scattering is discussed.
Analogies with optics and Berry phase alongside with the experimental
consequences of the proposed interpretation at the LHC energies are considered.Comment: 4 pages, 1 figure, talk given by S. Troshin at Diffraction 2008,
September 9-14, La Londe-les-Maures, Franc
Edge Magnetoplasmons in Quantum Hall Line Junction Systems
A quantum Hall line junction system consists of a one-dimensional Luttinger
liquid (LL) and two chiral channels that allow density waves incident upon and
reflected by the LL to be measured separately. We demonstrate that interactions
in a quantum Hall line junction system can be probed by studying edge
magnetoplasmon absorption spectra and their polarization dependences. Strong
interactions in the junction lead to collective modes that are isolated in
either Luttinger liquid or contact subsystems.Comment: 4 pages, 3 figures, submitted to Phys. Rev. B Rapid Communicatio
Detection of Malawi polyomavirus sequences in secondary lymphoid tissues from Italian healthy children: a transient site of infection
BACKGROUND:
The novel Malawi polyomavirus (MWPyV) was initially detected in stool specimens from healthy children and children with gastrointestinal symptoms, mostly diarrhea, indicating that MWPyV might play a role in human gastroenteric diseases. Recently, MWPyV sequences were additionally identified in respiratory secretions from both healthy and acutely ill children suggesting that MWPyV may have a tropism for different human tissues. This study was designed to investigate the possible sites of latency/persistence for MWPyV in a cohort of healthy Italian children.
METHODS:
Specimens (n\ub0 500) of tonsils, adenoids, blood, urines and feces, from 200 healthy and immunocompetent children (age range: 1-15 years) were tested for the amplification of the MWPyV LT antigen sequence by quantitative real-time PCR. Samples (n\ub0 80) of blood and urines from 40 age-matched children with autoimmune diseases, were screened for comparison. Polyomaviruses JC/BK and Epstein-Barr Virus (EBV) were also tested as markers of infection in all samples using the same molecular technique.
RESULTS:
In our series of healthy children, MWPyV was detected only in the lymphoid tissues showing a prevalence of 6 % in tonsils and 1 % in adenoids, although with a low viral load. No JCPyV or BKPyV co-infection was found in MWPyV positive samples, while EBV showed a similar percentage of both in tonsils and adenoids (38 and 37 %). Conversely, no MWPyV DNA was detected in stool from babies with gastroenteric syndrome. With regards to autoimmune children, neither MWPyV nor BKPyV were detected in blood, while JCPyV viremia was observed in 15 % (6/40) of children treated with Infliximab. Urinary BKPyV shedding was observed in 12.5 % (5/40) while JCPyV in 100 % of the samples.
CONCLUSIONS:
The detection of MWPyV sequences in tonsils and adenoids of healthy children suggests that secondary lymphoid tissues can harbour MWPyV probably as transient sites of persistence rather than actual sites of latency
QCD and total cross-sections: photons and hadrons
In this contribution, we discuss a total cross-section model which can be
applied to both photon and purely hadronic processes. We find that the model
can reproduce photo-production cross-sections, as well as extrapolations of
gamma* p processes to gamma p using vector meson dominance models, with minimal
modifications from the proton case.Comment: 5 pages, 1 figure, to be published in Proceedings of Diffraction
2008, September 9-14 2008, Marseille, Franc
Derivation of critical rainfall thresholds for shallow landslides as a tool for debris flow early warning systems
Abstract. Real-time assessment of debris-flow hazard is fundamental for developing warning systems that can mitigate risk. A convenient method to assess the possible occurrence of a debris flow is to compare measured and forecasted rainfalls to critical rainfall threshold (CRT) curves. Empirical derivation of the CRT from the analysis of past events' rainfall characteristics is not possible when the database of observed debris flows is poor or when the environment changes with time. For debris flows and mud flows triggered by shallow landslides or debris avalanches, the above limitations may be overcome through the methodology presented. In this work the CRT curves are derived from mathematical and numerical simulations, based on the infinite-slope stability model in which slope instability is governed by the increase in groundwater pressure due to rainfall. The effect of rainfall infiltration on landside occurrence is modelled through a reduced form of the Richards equation. The range of rainfall durations for which the method can be correctly employed is investigated and an equation is derived for the lower limit of the range. A large number of calculations are performed combining different values of rainfall characteristics (intensity and duration of event rainfall and intensity of antecedent rainfall). For each combination of rainfall characteristics, the percentage of the basin that is unstable is computed. The obtained database is opportunely elaborated to derive CRT curves. The methodology is implemented and tested in a small basin of the Amalfi Coast (South Italy). The comparison among the obtained CRT curves and the observed rainfall amounts, in a playback period, gives a good agreement. Simulations are performed with different degree of detail in the soil parameters characterization. The comparison shows that the lack of knowledge about the spatial variability of the parameters may greatly affect the results. This problem is partially mitigated by the use of a Monte Carlo approach
Scaling Exponents in the Incommensurate Phase of the Sine-Gordon and U(1) Thirring Models
In this paper we study the critical exponents of the quantum sine-Gordon and
U(1) Thirring models in the incommensurate phase. This phase appears when the
chemical potential exceeds a critical value and is characterized by a
finite density of solitons. The low-energy sector of this phase is critical and
is described by the Gaussian model (Tomonaga-Luttinger liquid) with the
compactification radius dependent on the soliton density and the sine-Gordon
model coupling constant .
For a fixed value of , we find that the Luttinger parameter is
equal to 1/2 at the commensurate-incommensurate transition point and approaches
the asymptotic value away from it. We describe a possible phase
diagram of the model consisting of an array of weakly coupled chains. The
possible phases are Fermi liquid, Spin Density Wave, Spin-Peierls and Wigner
crystal.Comment: 10pages; Improved version; Submitted to Physical Review
The cytochrome chain of mitochondria exhibits variable H+/e− stoichiometry
AbstractA study is presented of the ←H+/e− stoichiometry for H+ pumping by the cytochrome chain in isolated rat liver mitochondria under level-flow and steady-state conditions. It is shown that the ←H+/e− stoichiometry for the cytochrome chain varies under the influence of the flow rate and transmembrane ΔμH+. The rate-dependence is shown to be associated with cytochrome c oxidase, whose ←H+/e− ratio varies from 0 to 1, whilst the ←H+/c− ratio for the span covered by cytochrome c reductase is invariably 2
Sex differentiation pattern in the annual fish Austrolebias charrua (Cyprinodontiformes: Rivulidae)
Sex differentiation process, determination of sexual strategy, and gametogenesis of the annual fish Austrolebias charrua are established. Evidence of histological sex differentiation in an antero-posterior gradient was observed in pre-hatching stages. Sexual strategy corresponds to the “differentiated gonochoric” pattern. Histological analyses of adult gonads showed an asynchronous spawning mode for females and continuous spawning for males. Mature oocytes presented fluid yolk. Testis organization corresponded to a restricted spermatogonial model. Herein, we report the ultrastructural organization of the vitelline envelope and the main features of the sperm of A. charrua. Taking together these results also contribute to phylogenetic studies and provide base line data to propose A. charrua as a biomonitor of contamination in a protected are
Roadmap for stroke: Challenging the role of the neuronal extracellular matrix
Stroke is a major challenge in modern medicine and understanding the role of the neuronal extracellular matrix (NECM) in its pathophysiology is fundamental for promoting brain repair. Currently, stroke research is focused on the neurovascular unit (NVU). Impairment of the NVU leads to neuronal loss through post-ischemic and reperfusion injuries, as well as coagulatory and inflammatory processes. The ictal core is produced in a few minutes by the high metabolic demand of the central nervous system. Uncontrolled or prolonged inflammatory response is characterized by leukocyte infiltration of the injured site that is limited by astroglial reaction. The metabolic failure reshapes the NECM through matrix metalloproteinases (MMPs) and novel deposition of structural proteins continues within months of the acute event. These maladaptive reparative processes are responsible for the neurological clinical phenotype. In this review, we aim to provide a systems biology approach to stroke pathophysiology, relating the injury to the NVU with the pervasive metabolic failure, inflammatory response and modifications of the NECM. The available data will be used to build a protein–protein interaction (PPI) map starting with 38 proteins involved in stroke pathophysiology, taking into account the timeline of damage and the co-expression scores of their RNA patterns The application of the proposed network could lead to a more accurate design of translational experiments aiming at improving both the therapy and the rehabilitation processes
- …