52 research outputs found

    Towards zero-waste campus: perception of the community in UTHM Pagoh campus on solid waste management system

    Get PDF
    The solid waste crisis has become one of the contributors to environmental issues such as climate change, environmental pollution and loss of rainforest. The contribution of Higher Educational Institutions (HEIs) in achieving sustainable development and society is undeniable. With the ethical and moral obligations to act responsibly towards the environment, they tend to become leaders in the movement for environmental protection. As a new branch of the Universiti Tun Hussein Onn (UTHM) campus, the UTHM Pagoh Campus aims to become one of the green campuses at Pagoh Educational Hub. A well-managed Solid Waste Management (SWM) can provide a number of benefits, such as reduction in waste disposal cost as well as creating awareness among the campus community. In this study, interviews were carried out with the stakeholders to obtain in-depth information regarding SWM on campus. From the interviews, it was found that the main challenges faced in implementing SWM on campus are: low awareness among the community; lack of policy and guidelines on SWM; and insufficient facilities. To overcome these challenges, the “Zero Waste Campus” (ZWC) initiative is proposed to be implemented on campus in order to reduce the waste stream. The ZWC covers several aspects of the campus’s SWM, such as policy development and facility improvement

    Plastic pollution in the ocean

    Get PDF
    Plastic pollution in the ocean was first reported by scientists in the 1970s, yet in recent years it has drawn tremendous attention from the media, the public, and an increasing number of scientists spanning diverse fields, including polymer science, environmental engineering, ecology, toxicology, marine biology, and oceanography. In the oceans, the threat to marine life comes in various forms, such as overexploitation and harvesting, dumping of waste, pollution, alien species, land reclamation, dredging and global climate change. The extremely visible nature of much of this contamination is easy to convey in shocking images of piles of trash on coastlines, marine mammals entangled in fishing nets, or seabird bellies filled with bottle caps, cigarette lighters, and colourful shards of plastic. Even without these images, anyone who has visited a beach has certainly encountered discarded cigarette butts, broken beach toys left behind, or pieces of fishing gear or buoys that have washed ashore

    Characterization of Mixed xWO3(1-x)Y2O3 Nanoparticle Thick Film for Gas Sensing Application

    Get PDF
    Microstructural, topology, inner morphology, and gas-sensitivity of mixed xWO3(1-x)Y2O3 nanoparticles (x = 1, 0.95, 0.9, 0.85, 0.8) thick-film semiconductor gas sensors were studied. The surface topography and inner morphological properties of the mixed powder and sensing film were characterized with X-ray diffraction (XRD), atomic force microscopy (AFM), transmission electron microscopy (TEM), and scanning electron microscopy (SEM). Also, gas sensitivity properties of the printed films were evaluated in the presence of methane (CH4) and butane (C4H10) at up to 500 °C operating temperature of the sensor. The results show that the doping agent can modify some structural properties and gas sensitivity of the mixed powder

    Simulation of transport in laterally gated junctionless transistors fabricated by local anodization with an atomic force microscope

    Get PDF
    In this paper, we have investigated the characteristics and transport features of junctionless lateral gate transistors via measurement and simulations. The transistor is fabricated using an atomic force microscopy (AFM) nanolithography technique on silicon-on-insulator (SOI) wafer. This work develops our previous examination of the device operation by using 3D numerical simulations to offer a better understanding of the origin of the transistor operation. We compare the experimental measurements and simulation results in the transfer characteristic and drain conductance. We also explore the behavior of the device in on and off states based on the variation of majority and minority carriers' density, electric-field components, and recombination/generation rate of carriers in the active region of the device. We show that the device is a normally on device that can force the current through a depleted region (off state) and uses bulk conduction instead of surface conduction. We also found that due to the lateral gate design, low-doped channel, and lack of the gate oxide the electrostatic squeezing of the channel effectively forces the device into the off state, but the current improvement by accumulation of carriers is not significant

    Design and development of Ni0.75Zn0.25Fe2O4/MWCNT microstrip patch antenna (MPA) for ISM band spectrum applications

    Get PDF
    This research paper represents the design and development of a microstrip patch antenna (MPA) for the ISM (Industrial, Scientific and Medical) band spectrum applications. The main objective of this paper is to analyze the performance of the MPA design using new engineering materials (Ni0.75Zn0.25Fe2O4/MWCNT) synthesized through chemical vapour deposition (CVD) method by utilizing the use of waste cooking oil (WCO) as a carbon source which acts as a printed radiating patch in order to replace a copper or gold (conventional) radiating patch in previous literature. The proposed antenna is fabricated on kapton substrate with dielectric constant, εr = 3.4 and loss tangent, tan δ = 0.004. The conducting patch is Ni0.75Zn0.25Fe2O4/MWCNT and ground antenna material is copper. The results demonstrate that the antenna is capable to comprehend return loss (RL) of – 24.03 dB at frequency of 2.43 GHz with bandwidth of 1.00 GHz and voltage standing wave ratio (VSWR) of 1.14. The antenna has overall dimensions of 33.60 × 41.74 × 0.025 mm3

    Association of severe hypertension with pneumonia in elderly patients with acute ischemic stroke

    Get PDF
    Pneumonia is one of the most frequent complications in elderly patients with acute ischemic stroke. Although severe hypertension is often observed in the early phase of acute stroke, there are few studies of acute hypertension as a factor influencing the incidence of stroke-associated pneumonia (SAP) in elderly subjects with acute ischemic stroke. To assess the association of acute phase blood-pressure elevation with the incidence of SAP, we compared 10 elderly patients with acute ischemic stroke complicated with severe hypertension (⩾200/120 mm Hg) with 43 patients with moderate hypertension (160–199/100–119 mm Hg), as well as with 65 control normotensive or mildly hypertensive (<160/100 mm Hg) controls on admission. Data were collected on known risk factors, type of ischemic stroke and underlying chronic conditions. The significance of differences in risk factors was analyzed using univariate and multivariate comparisons of 38 SAP cases and others, 8 SAP death cases and others, and 28 patients with poor outcome associated with in-hospital death or artificial feeding at discharge and others. After adjustment for potential confounding factors, the relative risk estimates for SAP, SAP death and poor outcome were 2.83 (95% confidence interval 1.14–7.05), 5.20 (1.01–26.8) and 6.84 (1.32–35.4), respectively, for severe hypertension relative to normotensive or mildly hypertensive controls. We conclude that severe hypertension on admission is an independent predictive factor for SAP in elderly patients with acute ischemic stroke

    Guidelines for management of ischaemic stroke and transient ischaemic attack 2008

    Get PDF
    This article represents the update of the European Stroke Initiative Recommendations for Stroke Management. These guidelines cover both ischaemic stroke and transient ischaemic attacks, which are now considered to be a single entity. The article covers referral and emergency management, Stroke Unit service, diagnostics, primary and secondary prevention, general stroke treatment, specific treatment including acute management, management of complications, and rehabilitation

    Synthesis and characterization of magnetic and microwave absorbing properties in polycrystalline cobalt zinc ferrite (Co0.5Zn0.5Fe2O4) composite

    No full text
    In this research work, magnetic and microwave absorption loss and other response characteristics in cobalt zinc ferrite composite has been studied. Cobalt zinc ferrite with the composition of Co0.5Zn0.5Fe2O4 was prepared via high energy ball milling followed by sintering. Phase characteristics of the as-prepared sample by using XRD analysis shows evidently that a high crystalline ferrite has been formed with the assists of thermal energy by sintering at 1250 °C which subsequently changes the magnetic properties of the ferrite. A high magnetic permeability and losses was obtained from ferrite with zinc content. Zn substitution into cobalt ferrite has altered the cation distribution between A and B sites in spinel ferrite which contributed to higher magnetic properties. Specifically, Co0.5Zn0.5Fe2O4 provides electromagnetic wave absorption characteristics. It was found that cobalt zinc ferrite sample is highly potential for microwave absorber which showed the highest reflection loss (RL) value of − 24.5 dB at 8.6 GHz. This material can potentially minimize EMI interferences in the measured frequency range, and was therefore used as fillers in the prepared composite that is applied for microwave absorbing material
    corecore