332 research outputs found

    Preliminary risk assessment of ecotoxic substances accidental releases in major risk installations through fuzzy logic

    Get PDF
    In the present work a fuzzy logic model to preliminary assess the risk of accidental releases of ecotoxic substances in hazard plants has been developed. The methodology is based in three steps, the characterization of the hazardousness of the substance, the delimitation of the soil and groundwater vulnerability and the identification of the protective and preventive measures of the plant. The tool has been tested with a set of storage yards of ecotoxic substances, mainly oil, in the Regione Piemonte area (Italy). The results obtained are in good agreement with the real situation of the surveyed storage yards. Thus, by using this methodology it is possible to preliminary assess the risk from uncertain data.Peer ReviewedPostprint (published version

    Risk based approach for procedures' optimization

    Get PDF
    Despite an increase in the process automation, different activities remain mainly operator driven, as the loading and unloading of tankers, maintenance operations, and so on. In these cases, the activities performed by the operator can be critical, both for the safety and for the product quality. Optimizing the operational procedures is thus a key factor for quality and safety. A risk assessment of the procedure can be adopted as a base for optimisation, highlighting which of the tasks within the procedure mainly contributes to the risk of the working activity. Usually the analysis of the procedures is carried on through a task analysis as in Builes et al. (2014). In this paper the task analysis is used as a starting point for a quantitative risk assessment carried on through an integrated dynamic decision analysis. The logical-probabilistic model of the procedure is elaborated jointly with a consequences analysis, obtaining a risk assessment for all the sequences of tasks of the work procedure under analysis. The risk assessment considered both possible equipment failures and the potential operational errors in executing the tasks. The proposed approach is in this paper demonstrated through the application of the integrated decision analysis for the operation of unloading of ammonia in a plant for the production and storage of fertilizers

    Expression, Purification, Crystallization and Preliminary X-ray Studies of Histamine Dehydroganase from Nocardioides simplex

    Get PDF
    This is the publisher's version, also available electronically from http://scripts.iucr.org/cgi-bin/paper?S1744309108023336.Histamine dehydrogenase (HADH) from Nocardioides simplex catalyzes the oxidative deamination of histamine to produce imidazole acetaldehyde and an ammonium ion. HADH is functionally related to trimethylamine dehydrogenase (TMADH), but HADH has strict substrate specificity towards histamine. HADH is a homodimer, with each 76 kDa subunit containing two redox cofactors: a [4Fe-4S] cluster and an unusual covalently bound flavin mononucleotide, 6-S-cysteinyl-FMN. In order to understand the substrate specificity of HADH, it was sought to determine its structure by X-ray crystallography. This enzyme has been expressed recombinantly in Escherichia coli and successfully crystallized in two forms. Diffraction data were collected to 2.7 Å resolution at the SSRL synchrotron with 99.7% completeness. The crystals belonged to the orthorhombic space group P212121, with unit-cell parameters a = 101.14, b = 107.03, c = 153.35 Å

    New insights into volcanic processes at Stromboli from Cerberus, a remote-controlled open-path FTIR scanner system

    Get PDF
    The ordinary, low intensity, activity of Stromboli volcano is sporadically interrupted by more energetic events termed, depending on their intensity, “major explosions” and “paroxysms”. These short-lived energetic episodes represent a potential risk to visitors to the highly accessible summit of Stromboli. Observations made at Stromboli over the last decade have shown that the composition of gas emitted from the summit craters may change prior to such explosions, allowing the possibility that such changes may be used to forecast these potentially dangerous events. In 2008 we installed a novel, remote-controlled, open-path FTIR scanning system called Cerberus at the summit of Stromboli, with the objective of measuring gas compositions from individual vents within the summit crater terrace of the volcano with high temporal resolution and for extended periods. In this work we report the first results from the Cerberus system, collected in August-September 2009, November 2009 and May-June 2010. We find significant, fairly consistent, intra-crater variability for CO2/SO2 and H2O/CO2 ratios, and relatively homogeneous SO2/HCl ratios. In general, the southwest crater is richest in CO2, and the northeast crater poorest, while the central crater is richest in H2O. It thus appears that during the measurement period the southwest crater had a somewhat more direct connection to a primary, deep degassing system; whilst the central and northeast craters reflect a slightly more secondary degassing nature, with a supplementary, shallow H2O source for the central crater, probably related to puffing activity. Such water-rich emissions from the central crater can account for the lower crystal content of its eruption products, and emphasise the role of continual magma supply to the shallowest levels of Stromboli's plumbing system. Our observations of heterogeneous crater gas emissions and high H2O/CO2 ratios do not agree with models of CO2-flushing, and we show that simple depressurisation during magma ascent to the surface is a more likely model for H2O loss at Stromboli. We highlight that alternative explanations other than CO2 flushing are required to explain distributions of H2O and CO2 amounts dissolved in melt inclusions. We detected fairly systematic increases in CO2/SO2 ratio some weeks prior to major explosions, and some evidence of a decrease in this ratio in the days immediately preceding the explosions, with periods of low, stable CO2/SO2 ratios between explosions otherwise. Our measurements, therefore, confirm the medium term (~ weeks) precursory increases previously observed with MultiGas instruments, and, in addition, reveal new, short-term precursory decreases in CO2/SO2 ratios. immediately prior to the major explosions. Such patterns, if shown to be systematic, may be of great utility for hazard management at Stromboli's summit. Our results suggest that intra-crater CO2/SO2 variability may produce short-term peaks and troughs in CO2/SO2 time series measured with in-situ MultiGas instruments, due simply to variations in wind direction

    Development of an Evaluation and Decision Support Method for Food Safety Management along the Supply Chain

    Get PDF
    Food industries need to establish very high quality and safety standards in response to consumer expectations and to face possible critical health consequences. Nowadays, there is a growing demand to extend food safety control to the entire supply chain, with the aim of granting prompt interventions to improve health safety. With this motivation, an evaluation and decision support method for risk management is proposed. Its objective is to extend the control of food safety from the single node of the supply chain of a food product to the entire supply chain, overcoming the concept of mere traceability, obtaining an increase in food safety in the face of more extended and globalized supply chains and more timely and targeted interventions, with consequent less production losses and reduction of waste. The proposed methodology seeks to include the assessment of entire supply chain (from cradle to gate), through two phases: 1) semi-quantitative risk analysis techniques and 2) efficiency indicators or KPIs related to safety processes. The methodology is validated through the application on a hazelnut-based products industry. The identification of the potential hazards was developed along the entire supply chain, trying to point out the critical factors which favor contamination and to define the KPIs. This process returned the critical points in which prevention and intervention measures will be required, to manage and control contamination risks. The methodology has demonstrated to be valid for identifying potential hazards and critical points and recognizing the possible factors that constitute a threat along the supply chain. The next step of this work will consist of the installation of sensors in the critical points identified to monitor the KPIs defined; these measurements will make possible further improvements in the methodology and guarantee greater safety for companies and consumers

    Kinetic and Structural Analysis of Substrate Specificity in Two Copper Amine Oxidases from Hansenula polymorpha

    Get PDF
    The structural underpinnings of enzyme substrate specificity are investigated in a pair of copper amine oxidases (CAOs) from Hansenula polymorpha (HPAO-1 and HPAO-2). The X-ray crystal structure (to 2.0 Å resolution) and steady state kinetic data of the second copper amine oxidase (HPAO-2) are presented for comparison to HPAO-1. Despite 34 % sequence identity and superimposable active site residues implicated in catalysis, the enzymes vary considerably in their substrate entry channel. The previously studied CAO, HPAO-1, has a narrow substrate channel. In contrast HPAO-2 has a wide funnel-shaped substrate channel, which also contains a side-chamber. In addition, there are a number of amino acid changes within the channels of HPAO-2 and HPAO-1 that may sterically impact the ability of substrates to form covalent Schiff base catalytic intermediates and to initiate chemistry. These differences can partially explain the greatly different substrate specificities as characterized by kcat/Km value differences: in HPAO-1, the kcat/Km for methylamine is 330-fold greater than for benzylamine, whereas in HPAO-2 it is benzylamine that is the better substrate by 750-fold. In HPAO-2 an inflated Dkcat/Km(methylamine) in relation to Dkcat/Km(benzylamine) indicates that proton abstraction has been impeded more than substrate release. In HPAO-1, Dkcat/Km(S) changes little with the slow substrate, and indicates a similar increase in the energy barriers that control both substrate binding and subsequent catalysis. In neither case is kcat/Km for the second substrate, O2, significantly altered. These results reinforce the modular nature of the active sites of CAOs and show that multiple factors contribute to substrate specificity and catalytic efficiency. In HPAO-1, the enzyme with the smaller substrate binding pocket, both initial substrate binding and proton loss are affected by an increase in substrate size, while in HPAO-2, the enzyme with the larger substrate binding pocket, the rate of proton loss is differentially affected when a phenyl substituent in substrate is reduced to the size of a methyl group

    Epigenetic Alteration of the Cancer-Related Gene TGFBI in B Cells Infected with Epstein–Barr Virus and Exposed to Aflatoxin B1: Potential Role in Burkitt Lymphoma Development

    Get PDF
    Burkitt lymphoma (BL) is a malignant B cell neoplasm that accounts for almost half of pediatric cancers in sub-Saharan African countries. Although the BL endemic prevalence is attributable to the combination of Epstein–Barr virus (EBV) infection with malaria and environmental carcinogens exposure, such as the food contaminant aflatoxin B1 (AFB1), the molecular determinants underlying the pathogenesis are not fully understood. Consistent with the role of epigenetic mechanisms at the interface between the genome and environment, AFB1 and EBV impact the methylome of respectively leukocytes and B cells specifically. Here, we conducted a thorough investigation of common epigenomic changes following EBV or AFB1 exposure in B cells. Genome-wide DNA methylation profiling identified an EBV–AFB1 common signature within the TGFBI locus, which encodes for a putative tumor suppressor often altered in cancer. Subsequent mechanistic analyses confirmed a DNA-methylation-dependent transcriptional silencing of TGFBI involving the recruitment of DNMT1 methyltransferase that is associated with an activation of the NF-κB pathway. Our results reveal a potential common mechanism of B cell transformation shared by the main risk factors of endemic BL (EBV and AFB1), suggesting a key determinant of disease that could allow the development of more efficient targeted therapeutic strategies

    Meals in western eating and drinking

    Get PDF
    Meals are a way of organizing eating into events that have a particular structure and form, and they play an indisputable and even self-evident role within the rhythms and routines of everyday life. In late modern societies, concern about the fate of meals has arisen in both public and academic discourse. It has been suggested that eating is characterized today by individualization, destructuration, and informalization and that communal meals are increasingly being replaced by snacks and solitary eating. This chapter focuses on meals in today’s affluent societies and reflects on why meals are considered important, how meals are defined, and what material elements and social dimensions they contain. It looks at how societal and cultural changes and ecological concerns may influence the organization and future of meals, and it suggests that the content of meals will change in response to the need to diminish the ecological burden of food production and consumption. In particular, plant-based options will at least partly need to replace meat and other animal-based foods. However, there is no reason to expect that the meal as a social institution will break down. Despite the fact that not all meals are characterized by conviviality and companionship, they continue to serve as a significant arena of human sociability and togetherness. Sharing food is, after all, an essential part of being human.Non peer reviewe

    The Role of Protein Crystallography in Defining the Mechanisms of Biogenesis and Catalysis in Copper Amine Oxidase

    Get PDF
    Copper amine oxidases (CAOs) are a ubiquitous group of enzymes that catalyze the conversion of primary amines to aldehydes coupled to the reduction of O2 to H2O2. These enzymes utilize a wide range of substrates from methylamine to polypeptides. Changes in CAO activity are correlated with a variety of human diseases, including diabetes mellitus, Alzheimer’s disease, and inflammatory disorders. CAOs contain a cofactor, 2,4,5-trihydroxyphenylalanine quinone (TPQ), that is required for catalytic activity and synthesized through the post-translational modification of a tyrosine residue within the CAO polypeptide. TPQ generation is a self-processing event only requiring the addition of oxygen and Cu(II) to the apoCAO. Thus, the CAO active site supports two very different reactions: TPQ synthesis, and the two electron oxidation of primary amines. Crystal structures are available from bacterial through to human sources, and have given insight into substrate preference, stereospecificity, and structural changes during biogenesis and catalysis. In particular both these processes have been studied in crystallo through the addition of native substrates. These latter studies enable intermediates during physiological turnover to be directly visualized, and demonstrate the power of this relatively recent development in protein crystallography
    corecore