27,335 research outputs found
Effect of White Spruce Release on Subsequent Defoliation by the Yellowheaded Spruce Sawfly, Pikonema Alaskensis (Hymenoptera: Tenthredinidae)
Hand release of 22 5-year-old white spruce, Picea glauca (Moench) Voss, dramatically increased the amount of defoliation by the yellowheaded spruce sawfly, Pikonema alaskens is . The percent defoliation of the released trees was six times the defoliation in the control trees. A light overstory for young white spruce is suggested as a silvicultural method of reducing defoliation by this sawfly
Interim user's manual for boundary layer integral matrix procedure, version J
A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included
Piezoconductivity of gated suspended graphene
We investigate the conductivity of graphene sheet deformed over a gate. The
effect of the deformation on the conductivity is twofold: The lattice
distortion can be represented as pseudovector potential in the Dirac equation
formalism, whereas the gate causes inhomogeneous density redistribution. We use
the elasticity theory to find the profile of the graphene sheet and then
evaluate the conductivity by means of the transfer matrix approach. We find
that the two effects provide functionally different contributions to the
conductivity. For small deformations and not too high residual stress the
correction due to the charge redistribution dominates and leads to the
enhancement of the conductivity. For stronger deformations, the effect of the
lattice distortion becomes more important and eventually leads to the
suppression of the conductivity. We consider homogeneous as well as local
deformation. We also suggest that the effect of the charge redistribution can
be best measured in a setup containing two gates, one fixing the overall charge
density and another one deforming graphene locally
Non-Hermitian Adiabatic Quantum Optimization
We propose a novel non-Hermitian adiabatic quantum optimization algorithm.
One of the new ideas is to use a non-Hermitian auxiliary "initial'' Hamiltonian
that provides an effective level repulsion for the main Hamiltonian. This
effect enables us to develop an adiabatic theory which determines ground state
much more efficiently than Hermitian methods.Comment: Minor corrections, 1 figure, 9 page
Chain motion and viscoelasticity in highly entangled solutions of semiflexible rods
Brownian dynamics simulations are used to study highly entangled solutions of
semiflexible polymers. Bending fluctuations of semiflexible rods are
signficantly affected by entanglement only above a concentration ,
where for chains of similar length and
persistence length. For , the tube radius approaches a
dependence , and the linear viscoelastic response
develops an elastic contribution that is absent for . Experiments
on isotropic solutions of -actin span concentrations near for which
the predicted asymptotic scaling of the plateau modulus is
not yet valid.Comment: 4 pages, 5 figures, submitted to PR
Two-photon Double Ionization of H in Intense Femtosecond Laser Pulses
Triple-differential cross sections for two-photon double ionization of
molecular hydrogen are presented for a central photon energy of 30 eV. The
calculations are based on a fully {\it ab initio}, nonperturbative, approach to
the time-dependent Schroedinger equation in prolate spheroidal coordinates,
discretized by a finite-element discrete-variable-representation. The wave
function is propagated in time for a few femtoseconds using the short,
iterative Lanczos method to study the correlated response of the two
photoelectrons to short, intense laser radiation. The current results often lie
in between those of Colgan {\it et al} [J. Phys. B {\bf 41} (2008) 121002] and
Morales {\it et al} [J. Phys. B {\bf 41} (2009) 134013]. However, we argue that
these individual predictions should not be compared directly to each other, but
preferably to experimental data generated under well-defined conditions.Comment: 4 pages, 4 figure
Comment on ``Sound velocity and multibranch Bogoliubov spectrum of an elongated Fermi superfluid in the BEC-BCS crossover"
The work by T. K. Ghosh and K. Machida [cond-mat/0510160 and Phys. Rev. A 73,
013613 (2006)] on the sound velocity in a cylindrically confined Fermi
superfluid obeying a power-law equation of state is shown to make use of an
improper projection of the sound wave equation. This inaccuracy fully accounts
for the difference between their results and those previously reported by
Capuzzi et al. [cond-mat/0509323 and Phys. Rev. A 73, 021603(R) (2006)]. In
this Comment we show that both approaches lead exactly to the same result when
the correct weight function is used in the projection. Plots of the correct
behavior of the phonon and monopole-mode spectra in the BCS, unitary, and BEC
limits are also shown.Comment: Comment on cond-mat/051016
Seasonal reproduction in a fluctuating energy environment: Insolation-driven synchronized broadcast spawning in corals
*Background/Question/Methods:* Colonies of spawning corals reproduce in mass-spawning events, in which polyps within each colony release sperm and eggs for fertilization in the water column, with fertilization occurring only between gametes from different colonies. Participating colonies synchronize their gamete release to a window of a few hours once a year (for the species Acropora digitifera we study experimentally). This remarkable synchrony is essential for successful coral reproduction and thus, maintenance of the coral reef ecosystem that is currently under threat from local and global environmental effects such as pollution, global warming and ocean acidification. The mechanisms determining this tight synchrony in reproduction are not well understood, although several influences have been hypothesized and studied including lunar phase, solar insolation, and influences of temperature and tides. Moreover, most corals are in a symbiotic relationship with photosynthetic algae (Symbiodinium spp.) that live within the host tissue. Experiments supported by detailed bioenergetic modeling of the coral-algae symbiosis have shown that corals receive >90% of their energy needs from these symbionts. We develop a bioenergetic integrate-and-fire model in order to investigate whether annual insolation rhythms can entrain the gametogenetic cycles that produce mature gametes to the appropriate spawning season, since photosynthate is their primary source of energy. We solve the integrate-and-fire bioenergetic model numerically using the Fokker-Planck equation and use analytical tools such as rotation number to study entrainment.

*Results/Conclusions:* In the presence of short-term fluctuations in the energy input, our model shows that a feedback regulatory mechanism is required to achieve coherence of spawning times to within one lunar cycle, in order for subsequent cues such as lunar and diurnal light cycles to unambiguously determine the “correct” night of spawning. Entrainment to the annual insolation cycle is by itself not sufficient to produce the observed coherence in spawning. The feedback mechanism can also provide robustness against population heterogeneity due to genetic and environmental effects. We also discuss how such bioenergetic, stochastic, integrate-and-fire models are also more generally applicable: for example to aquatic insect emergence, synchrony in cell division and masting in trees
Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness
Studying the problem of wave propagation in media with resistive boundaries
can be made by searching for "resonance modes" or free oscillations regimes. In
the present article, a simple case is investigated, which allows one to
enlighten the respective interest of different, classical methods, some of them
being rather delicate. This case is the 1D propagation in a homogeneous medium
having two purely resistive terminations, the calculation of the Green function
being done without any approximation using three methods. The first one is the
straightforward use of the closed-form solution in the frequency domain and the
residue calculus. Then the method of separation of variables (space and time)
leads to a solution depending on the initial conditions. The question of the
orthogonality and completeness of the complex-valued resonance modes is
investigated, leading to the expression of a particular scalar product. The
last method is the expansion in biorthogonal modes in the frequency domain, the
modes having eigenfrequencies depending on the frequency. Results of the three
methods generalize or/and correct some results already existing in the
literature, and exhibit the particular difficulty of the treatment of the
constant mode
- …
