27,335 research outputs found

    Effect of White Spruce Release on Subsequent Defoliation by the Yellowheaded Spruce Sawfly, Pikonema Alaskensis (Hymenoptera: Tenthredinidae)

    Get PDF
    Hand release of 22 5-year-old white spruce, Picea glauca (Moench) Voss, dramatically increased the amount of defoliation by the yellowheaded spruce sawfly, Pikonema alaskens is . The percent defoliation of the released trees was six times the defoliation in the control trees. A light overstory for young white spruce is suggested as a silvicultural method of reducing defoliation by this sawfly

    Interim user's manual for boundary layer integral matrix procedure, version J

    Get PDF
    A computer program for analyzing two dimensional and axisymmetric nozzle performance with a variety of wall boundary conditions is described. The program has been developed for application to rocket nozzle problems. Several aids to usage of the program and two auxiliary subroutines are provided. Some features of the output are described and three sample cases are included

    Piezoconductivity of gated suspended graphene

    Full text link
    We investigate the conductivity of graphene sheet deformed over a gate. The effect of the deformation on the conductivity is twofold: The lattice distortion can be represented as pseudovector potential in the Dirac equation formalism, whereas the gate causes inhomogeneous density redistribution. We use the elasticity theory to find the profile of the graphene sheet and then evaluate the conductivity by means of the transfer matrix approach. We find that the two effects provide functionally different contributions to the conductivity. For small deformations and not too high residual stress the correction due to the charge redistribution dominates and leads to the enhancement of the conductivity. For stronger deformations, the effect of the lattice distortion becomes more important and eventually leads to the suppression of the conductivity. We consider homogeneous as well as local deformation. We also suggest that the effect of the charge redistribution can be best measured in a setup containing two gates, one fixing the overall charge density and another one deforming graphene locally

    Non-Hermitian Adiabatic Quantum Optimization

    Full text link
    We propose a novel non-Hermitian adiabatic quantum optimization algorithm. One of the new ideas is to use a non-Hermitian auxiliary "initial'' Hamiltonian that provides an effective level repulsion for the main Hamiltonian. This effect enables us to develop an adiabatic theory which determines ground state much more efficiently than Hermitian methods.Comment: Minor corrections, 1 figure, 9 page

    Chain motion and viscoelasticity in highly entangled solutions of semiflexible rods

    Full text link
    Brownian dynamics simulations are used to study highly entangled solutions of semiflexible polymers. Bending fluctuations of semiflexible rods are signficantly affected by entanglement only above a concentration cc^{**}, where c103L3c^{**}\sim 10^{3}L^{-3} for chains of similar length LL and persistence length. For c>cc > c^{**}, the tube radius ReR_{e} approaches a dependence Rec3/5R_{e} \propto c^{-3/5}, and the linear viscoelastic response develops an elastic contribution that is absent for c<cc < c^{**}. Experiments on isotropic solutions of FF-actin span concentrations near cc^{**} for which the predicted asymptotic scaling of the plateau modulus Gc7/5G \propto c^{7/5} is not yet valid.Comment: 4 pages, 5 figures, submitted to PR

    Two-photon Double Ionization of H2_2 in Intense Femtosecond Laser Pulses

    Full text link
    Triple-differential cross sections for two-photon double ionization of molecular hydrogen are presented for a central photon energy of 30 eV. The calculations are based on a fully {\it ab initio}, nonperturbative, approach to the time-dependent Schroedinger equation in prolate spheroidal coordinates, discretized by a finite-element discrete-variable-representation. The wave function is propagated in time for a few femtoseconds using the short, iterative Lanczos method to study the correlated response of the two photoelectrons to short, intense laser radiation. The current results often lie in between those of Colgan {\it et al} [J. Phys. B {\bf 41} (2008) 121002] and Morales {\it et al} [J. Phys. B {\bf 41} (2009) 134013]. However, we argue that these individual predictions should not be compared directly to each other, but preferably to experimental data generated under well-defined conditions.Comment: 4 pages, 4 figure

    Comment on ``Sound velocity and multibranch Bogoliubov spectrum of an elongated Fermi superfluid in the BEC-BCS crossover"

    Get PDF
    The work by T. K. Ghosh and K. Machida [cond-mat/0510160 and Phys. Rev. A 73, 013613 (2006)] on the sound velocity in a cylindrically confined Fermi superfluid obeying a power-law equation of state is shown to make use of an improper projection of the sound wave equation. This inaccuracy fully accounts for the difference between their results and those previously reported by Capuzzi et al. [cond-mat/0509323 and Phys. Rev. A 73, 021603(R) (2006)]. In this Comment we show that both approaches lead exactly to the same result when the correct weight function is used in the projection. Plots of the correct behavior of the phonon and monopole-mode spectra in the BCS, unitary, and BEC limits are also shown.Comment: Comment on cond-mat/051016

    Seasonal reproduction in a fluctuating energy environment: Insolation-driven synchronized broadcast spawning in corals

    Get PDF
    *Background/Question/Methods:* Colonies of spawning corals reproduce in mass-spawning events, in which polyps within each colony release sperm and eggs for fertilization in the water column, with fertilization occurring only between gametes from different colonies. Participating colonies synchronize their gamete release to a window of a few hours once a year (for the species Acropora digitifera we study experimentally). This remarkable synchrony is essential for successful coral reproduction and thus, maintenance of the coral reef ecosystem that is currently under threat from local and global environmental effects such as pollution, global warming and ocean acidification. The mechanisms determining this tight synchrony in reproduction are not well understood, although several influences have been hypothesized and studied including lunar phase, solar insolation, and influences of temperature and tides. Moreover, most corals are in a symbiotic relationship with photosynthetic algae (Symbiodinium spp.) that live within the host tissue. Experiments supported by detailed bioenergetic modeling of the coral-algae symbiosis have shown that corals receive &#x3e;90% of their energy needs from these symbionts. We develop a bioenergetic integrate-and-fire model in order to investigate whether annual insolation rhythms can entrain the gametogenetic cycles that produce mature gametes to the appropriate spawning season, since photosynthate is their primary source of energy. We solve the integrate-and-fire bioenergetic model numerically using the Fokker-Planck equation and use analytical tools such as rotation number to study entrainment.&#xd;&#xa;&#xd;&#xa;*Results/Conclusions:* In the presence of short-term fluctuations in the energy input, our model shows that a feedback regulatory mechanism is required to achieve coherence of spawning times to within one lunar cycle, in order for subsequent cues such as lunar and diurnal light cycles to unambiguously determine the &#x201c;correct&#x201d; night of spawning. Entrainment to the annual insolation cycle is by itself not sufficient to produce the observed coherence in spawning. The feedback mechanism can also provide robustness against population heterogeneity due to genetic and environmental effects. We also discuss how such bioenergetic, stochastic, integrate-and-fire models are also more generally applicable: for example to aquatic insect emergence, synchrony in cell division and masting in trees

    Resonance modes in a 1D medium with two purely resistive boundaries: calculation methods, orthogonality and completeness

    Get PDF
    Studying the problem of wave propagation in media with resistive boundaries can be made by searching for "resonance modes" or free oscillations regimes. In the present article, a simple case is investigated, which allows one to enlighten the respective interest of different, classical methods, some of them being rather delicate. This case is the 1D propagation in a homogeneous medium having two purely resistive terminations, the calculation of the Green function being done without any approximation using three methods. The first one is the straightforward use of the closed-form solution in the frequency domain and the residue calculus. Then the method of separation of variables (space and time) leads to a solution depending on the initial conditions. The question of the orthogonality and completeness of the complex-valued resonance modes is investigated, leading to the expression of a particular scalar product. The last method is the expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies depending on the frequency. Results of the three methods generalize or/and correct some results already existing in the literature, and exhibit the particular difficulty of the treatment of the constant mode
    corecore