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Resonance modes in a one-dimensional medium with two purely
resistive boundaries: Calculation methods, orthogonality,
and completeness
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Studying the problem of wave propagation in media with resistive boundaries can be made by
searching for “resonance modes” or free oscillations regimes. In the present article, a simple case is
investigated, which allows one to enlighten the respective interest of different, classical methods,
some of them being rather delicate. This case is the one-dimensional propagation in a homogeneous
medium having two purely resistive terminations, the calculation of the Green function being done
without any approximation using three methods. The first one is the straightforward use of the
closed-form solution in the frequency domain and the residue calculus. Then, the method of
separation of variables �space and time� leads to a solution depending on the initial conditions. The
question of the orthogonality and completeness of the complex-valued resonance modes is
investigated, leading to the expression of a particular scalar product. The last method is the
expansion in biorthogonal modes in the frequency domain, the modes having eigenfrequencies
depending on the frequency. Results of the three methods generalize or/and correct some results
already existing in the literature, and exhibit the particular difficulty of the treatment of the constant
mode.

PACS number�s�: 43.20.Ks, 43.40.Cw, 02.30.Tb, 02.30.Jr �MO�
I. INTRODUCTION

Studying the problem of wave propagation in media
with resistive boundaries can be made by searching for
“resonance modes” �see Ref. 1�, or free oscillations regimes.
These modes can be nonorthogonal for the ordinary scalar
product, entailing some difficulties depending on the math-
ematical treatment, made either in the time or frequency do-
main. Two classical methods exist for such a problem, and
can be used either for a scalar, second-order differential
equation, or for a system of two equations of the first order.
They have been especially used for the problem of a one-
dimensional �1D� medium with one resistive boundary, the
other boundary condition being of Dirichlet type:

�i� In the time domain, the use of time and space as
separate variables leads directly to the basis of modes, but
they are nonorthogonal for the most common product, and
difficulties occur when searching for the coefficients depend-
ing, for instance, on initial conditions. Nevertheless, for a
particular case, Oliverto and Santini,2 and Guyader3 have
solved the problem, and Rideau,4 using a system of equations
of the first order, found a scalar product making the modes
orthogonal �see also Refs. 5–7�, and gave the proof of com-
pleteness.

�ii� In the frequency domain, the equations to be solved
are ordinary differential equations with boundary conditions
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depending on frequency, but the use of orthogonal decompo-
sition is possible. This leads to eigenmodes and eigenfre-
quencies depending on frequency. It is the case for the clas-
sical theory of room acoustics �see, e.g., Morse and Ingard�,8

using biorthogonality. To return to time domain in order to
deduce the resonance modes is a rather delicate task, espe-
cially because of the calculation of the derivation of eigen-
frequencies with respect to frequency. Biorthogonality has
been used also for duct modes �see, e.g., Ref. 9� Another
approach has been recently used by Trautmann and
Rabenstein,10,11 using a system of first-order equations �these
authors treat the case of two resistive boundary conditions�.

The present article is devoted to the study of the simple
1D case, when the two boundaries are resistive. One goal is
to exhibit how the different methods articulate. We start by
using the fact that a straightforward solution exists for the
wave equation with source, by applying the residue calculus
to the closed form of the Fourier domain solution: As dis-
cussed by Levine,12 this closed-form solution, avoiding the
sum of a series, is “relatively poorly, if not entirely, unknown
to the general acoustics community.” All calculations can be
carried out analytically without any approximation, exhibit-
ing the properties of the different methods �however many
previous papers restrict their content to small impedance, or
admittance, at one extremity, using perturbation methods�.
The case under study corresponds to 1D propagation in a
homogeneous medium bounded by two other semi-infinite
media with different characteristic impedances, dissipation

being therefore due to radiation at infinity. It is especially
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interesting because of its physical significance �it is probably
the simplest radiation problem�, and also because it realizes
one of the possible transitions between Neumann and Dirich-
let boundary conditions. Notice that in the context of optics
and quantum mechanics, the problem has been studied in-
cluding the outside media by Leung et al.13,14 the resonance
modes being called quasinormal modes.

In Sec. II, the equations to be solved are stated, with
some possible physical interpretations. As a first step, the
classical, closed-form solution of the Green function in the
frequency domain is established �Sec. III�, with its inverse
Fourier transform �FT� corresponding to the successive re-
flections �Sec. IV�. The second step is the residue calculus in
order to determine the resonance modes �Sec. V, the basic
result being given by Eq. �26��. Then, results are compared
to those of the two aforementioned methods, i.e.:�i� The
method of separation of variables �Sec. VI�, which gives the
result for given initial conditions �the corresponding results
being Eqs. �37�, �48�, and �49��; in this section, the question
of orthogonality and completeness of the modes is investi-
gated; and �ii� the method of eigenmodes in the frequency
domain �section VII�. For the two methods, both second-
order scalar equation and first-order system of two equations
are used successively, with emphasis on the existence of a
constant mode.

II. STATEMENT OF THE PROBLEM, PHYSICAL
INTERPRETATION

The Green function g�x , t �x0 , t0� for the wave equation is
solution of the following equation:

��xx
2 − c−2�tt

2�g�x,t� = − ��x − x0���t − t0� , �1�

where x and x0 are the spatial coordinates of the receiver and
source, respectively �or vice versa�, t and t0 the times of
observation and excitation, respectively, c is the speed of
sound. ��x� is the Dirac function.

For sake of simplicity, x0 and t0 are considered to be
fixed. Moreover in the whole paper, the choice of t0=0 is
made. For negative t, the function is zero, as well as its first
derivative. The Green function satisfies the following bound-
ary conditions:

c��xg�x,t� = �tg�x,t� at x = 0, �2�

c���xg�x,t� = − �tg�x,t� at x = � , �3�

where �=Z /�c, � is the density of the fluid, and Z is the
impedance at x=0, which is assumed to be a real quantity,
independent of the frequency. Similarly, ��=Z� /�c, where Z�

is the impedance at x=� �� being positive�.
An obvious physical interpretation for quantities � and

�� is the following: Consider for x�0 and x�� �see Fig. 1�
two media with characteristic impedances �−c− and �+c+, re-
spectively. If the media are nondissipative, impedances are
real, and can be larger or smaller than the impedance of the
bounded medium, �c. Moreover, they are positive, because
they correspond to waves outgoing from the bounded me-
dium. Therefore, this is the problem of planar pressure waves

in a stratified medium, the direction of propagation being
normal to the interfaces. A generalization to more complex
stratified media would be possible, at least numerically. In
this problem, the Green function corresponds to the acoustic
pressure: Of course, it does not have the dimension of a
pressure, but the solution for a “concrete” problem with
source can be easily solved, as explained in standard text-
books, and discussed in a recent paper by Levine.12

Other problems correspond to the previous equations:

�i� In an approximate way, ignoring higher-order duct
modes, the problem of planar waves in a rigid walled
duct terminating in two semi-infinite ducts with dif-
ferent cross sections areas, the quantities � and �� be-
ing the ratios of the areas. The approximation is good
at low frequencies.

�ii� The problem of a dissipative termination: The termi-
nal impedances Z and Z� can be the impedances of
dissipative media �at low frequencies, a porous me-
dium open to a large space can be an approximation
of a pure resistance, due to viscous effects�.

In all of the previous problems, the quantities � and ��

are real and positive, the terminations being passive. For
active terminations, they can be negative. An example is the
beginning of self-sustained oscillations in musical instru-
ments: A nonlinear excitator, such as a reed for a clarinet, can
be linearized as a pure resistance. When the main control
parameter, i.e., the pressure in the mouth of the musician,
increases, the resistance becomes negative, the static regime
becomes unstable, and an oscillation starts as an increasing
exponential �see e.g., Refs. 15 and 16�.

Obviously, analogous problems for mechanical vibra-
tions or other wave fields are numerous.

III. CLOSED-FORM SOLUTION FOR THE FOURIER
TRANSFORM

The FT of g�x , t� is denoted G�x ,�� �throughout the ar-
ticle, functions of time are written in small characters, and
their FTs are written in capital characters�. It is equal to

G�x,�� = �
−�

+�

g�x,t�e−i�tdt, where �4�

g�x,t� =
1

2�
�+�

G�x,��ei�td� . �5�

FIG. 1. 1D medium bounded with two other media.
−�



The FT of Eqs. �1�–�3� are found to be

��xx
2 + �2/c2�G�x,�� = − ��x − x0� , �6�

c��xG�x,�� = i�G�x,�� at x = 0; �7�

c���xG�x,�� = − i�G�x,�� at x = � . �8�

While terminal impedances are independent of fre-
quency; boundary conditions are frequency dependent. Nev-
ertheless a classical closed-form solution is already known,
which has been especially used in Ref. 17. If x�x0 solutions
of Eq. �6� can be written as

G�x,�� = A− cosh�i�x/c + 	�, if x � x0;

G�x,�� = A+ cosh�i��� − x�/c + 	��, if x � x0.

For the boundary conditions, the following definitions
are used:

� = coth 	; r = e−2	 = �� − 1�/�� + 1� ,

�� = coth 	�; r� = e−2	� = ��� − 1�/��� + 1� , �9�

where r and r� are the reflection coefficients. The quantity 	
satisfies: 2	=−�ln�r�+ i arg�r�� �2��. Because r is real, we
choose the following definition:

	 = 	r + i
�/2; 
 = 0 or 1. �10�

Two cases exist: �i� if ����1, r�0, 
=0; �ii� if ����1, r
�0, 
=1. A similar remark and definition can be applied to
boundary x=�:

	� = 	�r + i
��/2; 
� = 0 or 1. �11�

The case �=1 �semi-infinite tube or medium� corresponds to
	=�: It is discussed in the next sections. Except for the last
one, most of the following calculations are valid for all
cases. At x=x0, writing the continuity of the function and the
jump of its first derivative, the following result is obtained:

G�x,�� =
c

i�

cosh�	 + i�x0/c�cosh�	� + i��� − x�/c�
sinh�i��/c + 	 + 	��

,

�12�

if x�x0 and a similar result if x�x0, by interchanging x and
x0.

IV. SOLUTION IN THE TIME DOMAIN „SUCCESSIVE
REFLECTIONS…

Equation �12� can be transformed in the time domain,
leading to a solution corresponding to the successive reflec-
tions of the Green function in infinite space at the two
boundaries. It will be the reference solution for the check of
the validity of the modal expansion. The sinh function of the
denominator can be written as

sinh�i��/c + 	 + 	�� =
1 − e−2	−2	�−2i��/c

2e−	−	�−i��/c ,

and, if the modulus of the exponential at the denominator is

less than unity �this is discussed hereafter�, as
sinh−1�i��/c + 	 + 	�� = 2e−	−	�−i��/c�1 + F��� + F2���

+ F3��� + ¯ � . �13�

F���=exp�−2	−2	�−2i�� /c� is the function correspond-
ing to a complete round trip of a wave in the tube, of
duration 2� /c. Concerning the numerator of Eq. �12�, it
can be written: exp�+	+	�+ i�� /c�Gp�x ,��c /4, where:

Gp�x,�� = e−i��x−x0�/c + re−i��x+x0�/c + r�e−i��2�−x−x0�/c

+ rr�e−i��2�−x+x0�/c. �14�

Therefore, the Green function is:

G�x,�� =
c

2i�
Gp�x,���1 + F��� + F2��� + . . . � . �15�

The factor Gp�x ,�� / i� corresponds to the four “primary”
waves arriving during the first cycle of duration 2� /c, and
this packet is simply reproduced at times 2� /c, 4� /c, 6� /c,
etc. �for a detailed explanation, see e.g., Kergomard�.15 The
inverse FT of the function Gp�x ,�� / i�, denoted hp�x , t�, is
obtained by taking into account the zero condition for nega-
tive times. The result is found to be, whatever the sign of
�x−x0�:

hp�x,t� = H�t − �x − x0�/c� + rH�t − �x + x0�/c� + rH�t

− �2� − x − x0�/c� + rr�H�t − �2� − �x − x0��/c� ,

�16�

where H�t� is the step function. Finally

g�x,t� =
c

2
hp�x,t� � ���t� + f�t� + �f � f��t� + . . . �; �17�

f�t� = rr���t − 2�/c� . �18�

The condition of validity of expansion �13� is �rr���1.
We notice that if � is real and positive, �r��1, and similarly
for ��. Therefore, the condition is satisfied when the two
boundaries are dissipative, or, more precisely, if the combi-
nation of the two reflections is dissipative. The case �rr��
�1 will be discussed in Sec. V C. Other comments can be
made:

�a� The article is limited to purely resistive boundaries, but
Eqs. �16� and �18� can be generalized to various bound-
ary conditions defined by a reflection coefficient, R���.
This is done by replacing the products like rH�t� by the
convolution product �r*H��t�, where r�t� is the inverse
FT of R���.

�b� For the case under study, we notice that the convolution
product of n times function f�t� is �rr��n��t−2n� /c�.

�c� If � �respectively ��� is unity, the reflection coefficient r
�respectively r�� vanishes, as well as f�t�: The first term
of the Green function is the Green function of an infi-
nite medium, the first two terms correspond to a semi-
infinite medium, etc¼ As it will be seen in the next
section, no modes can be found for these cases, because
no reflections exist, either 	 or 	� tending to infinity.

�d� Finally, multiplying both members of Eq. �15� by the

factor �1−F����, and taking the inverse FT, it appears



that a closed-form exists in the time domain, which is
the basis for the study of the Helmholtz motion of
bowed string instruments �see, e.g., Woodhouse�.18 It is
a recurrence relationship:

�tg�x,t� − rr��tg�x,t − 2�/c� = gp�x,t�c/2.

V. EXPANSION IN RESONANCE MODES USING THE
INVERSE FT

Putting expression �12� of the frequency domain in Eq.
�5� leads to the modal expansion of the time domain expres-
sion. The tool is the residue calculus. If all poles of expres-
sion �12� are simple and located on or above the real axis, the
following equation can be used:

g�x,t� = i, if t � 0 and 0 if t � 0, �19�

where  is the sum of the residues of G�x ,��exp�i�t� �see
e.g., Morse and Ingard8 p. 17, changing i to −i�.

A. Calculation of the poles

Zeros of function sinh satisfy:

i�n = �− 	 − 	� + in��c/� , �20�

where n is an integer. In order for the poles to be above the
real axis, the condition is 	r+	�r�0. It is equivalent to the
condition previously obtained for the successive reflections
expansion: �rr���1. Using definition �10�, Eq. �20� is rewrit-
ten as

�n = �n − �
 + 
��/2��c/� + i�	r + 	�r�c/� . �21�

As already remarked by several authors, the imaginary
part of the complex frequency is independent of n, and the
real part is independent of the dissipation. Depending on the
values of � and ��, different cases must be distinguished:

�i� If ����1 and �����1 �real 	 and 	��: The real part of
the frequency corresponds to the values for pure Neu-
mann conditions �infinite � and ���.

�ii� If ����1 and �����1 �mixed case with either complex
	 or complex 	�: either 
 or 
� is unity�: The real
part corresponds to a problem with different condi-
tions �Neumann and Dirichlet� at x=0 and x=�. The
real part of eigenfrequencies is an odd harmonic of
c /4�.

�iii� If ����1 and �����1 �complex 	 and 	�: 
=
�=1�:
the real part corresponds to the values for pure Dirich-
let conditions �zero � and ���.

Except for case �ii�, a purely imaginary eigenfrequency
exists for n= �
+
�� /2.

B. Calculation of the residues

In all cases, the Taylor expansion of the function sinh in
Eq. �12� at the first order of the quantity ��−�n� can be
determined. The result is

sinh�i��/c + 	 + 	�� � i�− 1�n�� − �n��/c . �22�
We get for � close to the pole �n:
G�x,�� = −
c2

�n�

fn�x�fn�x0�
�� − �n�

; �23�

fn�x� = cosh�	 + i�nx/c� , �24�

or fn�x�= �−1�ncosh�i�n��−x� /c+	��. The residue corre-
sponding to the pole �=0, remains to be calculated. For
small �,

G�x,�� =
c

i�

cosh 	 cosh 	�

sinh�	 + 	��
=

c

i�

1

�−1 + ��
−1 . �25�

Using Eq. �19�, the inverse FT of G�x ,�� is obtained:

g�x,t� = H�t�
c2

� �
n

fn�x�fn�x0�
i�n

ei�nt +
cH�t�

�−1 + ��
−1 . �26�

Some comments can be made.
�a� The formula is valid for all aforementioned cases.
�b� The mode shapes fn�x� are complex-valued functions

of the space variable, meaning that the shape is varying with
time �for a discussion on complex modes, see e.g; Ref. 19�.
The question of their orthogonality will be discussed in Sec.
VI. Notice that functions fn�x� do not fulfill the same bound-
ary conditions than G�x ,��: the boundary conditions are �7�
and �8�, but where � is replaced by �n.

�c� The last term in Eq. �26� is a constant mode. If one of
the impedances � or �� is zero, it disappears, as it is intuitive,
in order to satisfy a Dirichlet condition. It is a trivial solution
of the wave equation and the boundary conditions, and can
be compared to the dc component of a periodic signal. When
both � and �� tend to infinity, the boundaries tend to Neu-
mann boundaries, and the combination of the nonoscillatory
mode of frequency �0 and the constant mode results in a
uniform �i.e., constant in space� mode which increases lin-
early with time. The calculation is done as follows: If 	 and
	� tend to zero, �0 tends to zero, and the factor exp�i�0t� can
be written as: 1+ i�0t. The zeroth-order term is equal to the
opposite of the constant mode, and only the linear term re-
mains. The result is H�t�tc2 /�, and its FT is −c2 /��2. This
mode is the classical uniform mode existing for instance in
three-dimensional cavities with rigid walls: Curiously, it ex-
ists in the standard textbooks �see, e.g., Ref. 8, page 571�,
but the time domain expression is not given. This mode is
similar to the well-known planar guided mode, existing in
ducts with rigid walls, whatever the geometrical shape.

�d� The imaginary part of the complex frequencies being
independent of n, the decay is identical for all nonconstant
modes.

�e� For the above-considered case �i�, we notice that
�−n=−�n

* and f−n�x�= fn
*�x�, and, more generally,

i�� = �i�n�*; f��x� = �− 1�
fn
*�x� , �27�

where � = − n + 
 + 
� is an integer. �28�

As a consequence, the solution g�x , t� is real. It could be
possible to transform the sum by adding the two oscillating
terms corresponding to n and �, when n��, as it is usually
done for nondissipative boundaries. Nevertheless, it appears

that the formulas become intricate.



�f� Equations �23� and �25� lead directly to another form
of the FT of result �26�, written as a series:

G�x,�� = −
c2

� �
n

fn�x�fn�x0�
�n�� − �n�

+
c

i�

1

�−1 + ��
−1 . �29�

An example of comparison of the successive reflections
method and modal expansion is shown in Fig. 2�a�, for con-
ditions close to Neumann and Dirichlet. We notice that it is
satisfactory. The Gibbs phenomenon appears, because of the
truncated series of modes, ensuring the correct accordance
between the two methods. Moreover, this accordance con-
firms the existence of the constant mode. Decreasing of the
maxima is due to the dissipation at the boundaries: For pure
Neumann and Dirichlet conditions, the shape would be simi-
lar, but perfectly periodical.

C. The case of active boundaries

What happens when the combination of boundaries is
active, i.e., when �rr���1, or 	r+	�r�0 �at least one of the
impedances � or �� is negative�? It is possible to prove that
Eqs. �17� and �26� remain valid for active boundary condi-
tions, as explained hereafter. The real part of i�n being inde-
pendent of n, this suggests to use a new function g̃�x , t�
=g�x , t�exp�−	̃t�, where 	̃�−	r−	�r�0, which can be sub-
stituted in the initial problem in order for the poles to be
located again on or above the real axis. Equation �1� be-
comes

�xx
2 g̃�x,t� − c−2��t + 	̃�2g̃�x,t� = − ��x − x0�e−	̃t��t� ,

and similarly for Eqs. �2� and �3�. It is equivalent to use an
appropriate Laplace transform. Going in the frequency do-

main leads to Eqs. �6�–�8�, where G�x ,�� is replaced by
G̃�x ,�� and i� by �i�+ 	̃�, and a similar result for Eq. �12�.
The analysis of both successive reflections and poles and
residues leads to the result g̃�x , t�=g�x , t�exp�−	̃t�, where
g�x , t� is given by Eqs. �17� and �26�, respectively, and the
proof is achieved. Here, we do not repeat the complete
procedure. We notice that for the case 	r+	�r=0, one
boundary is active and the other one is passive: Eigenfre-
quencies �n are real, while modes are complex. Figure
2�b� shows an example of result.

VI. METHOD OF SEPARATION OF VARIABLES

A. Second-order homogeneous equation with initial
conditions

1. Derivation of the modes

Oliverto and Santini,2 and Guyader3 have treated a par-
ticular case of the problem �zero �, large ��� using the
method of separation of variables. He gets nonorthogonal
modes for the common scalar product 	0

�fn�x�fm�x�dx. We
will see that the method is valid whatever the values of the
two boundary conditions, and how the derivation can be sim-
plified.

We are searching for solutions p�x , t� of homogeneous
Eq. �1� �without second member�, with boundary conditions
�2� and �3�, and with given initial conditions. Assuming that,
the general solution is a superposition of solutions with sepa-
rate variables, the solutions with separate variables are writ-
ten in the following form:

p�x,t� = f�x�h�t�; �30�

h�t� = B+ei�t + B−e−i�t; �31�

FIG. 2. �Color online� Normalized Green function as a
function of time: comparison between the successive
reflections method �dotted line� and modal expansion
�solid line, 102 modes, i.e., maximum n=50�. Locations
of the source and receiver are x0 /�=0.15 and x /�
=0.76, respectively. �a� Passive boundaries �=4; ��

=0.1 �constant mode=0.097�. �b� Active boundary �
=��=−4. �constant mode=−2�.
f�x� = cosh�i�x/c + �� . �32�



Decomposition �30� differs from the ordinary FT, be-
cause a priori � is a complex quantity, depending on the
boundary conditions. Considering first the solution B+ei�t,
this leads to:

�� sinh � = � cosh �; �33�

��� sinh�i��/c + �� = − � cosh�i��/c + �� . �34�

�=0 is a solution, corresponding to the constant mode.
The other modes are given by Eq. �33�: sinh��−	�=0, thus:

f�x� = cosh�i�x/c + 	� . �35�

Actually, there is a sign � in the right-hand side member
of Eq. �35�, but it is without importance, because it can be
included in the coefficient B+ of the solution. The eigenval-
ues equation is deduced from Eqs. �33� and �34�, as follows:

sinh�i��/c + 	 + 	�� = 0, �36�

the solutions being given by Eq. �20�. The solution in time
B−e−i�t does not lead to new solutions for f�x�, therefore,
assuming the solutions form a basis of solutions �this is dis-
cussed in Sec. VI B�, the general solution of a problem with
initial conditions can be written as:

p�x,t� = �
n

Anfn�x�ei�nt + A , �37�

where �n and fn�x� are given by Eqs. �20� and �24�, respec-
tively, and the coefficients An and A depend on the initial
conditions, and can be determined using the orthogonality
relation of the modes. A is the coefficient of the constant
mode.

2. Orthogonality relationship between the modes:
First approach

In order to derive an orthogonality relationship between
the modes the common product is first calculated:

�nm = �
0

�

fn�x�fm�x�dx . �38�

Because fn�x�= �−1�
f�
*�x�, the calculation of the quantities

defined in Eq. �38� for all values of the index n is equivalent
to the calculation of the quantities defined when replacing
fm�x� by its conjugate. Writing

�
0

� 
 fn�x�
d2fm�x�

dx2 − fm�x�
d2fn�x�

dx2 �dx

= 
 fn�x�
dfm�x�

dx
− fm�x�

d2fn�x�
dx2 �

0

�

,

and using Eq. �24�, the following result is obtained:

��m
2 − �n

2�
c2 �nm = i��m − �n�
 fn�0�fm�0�

�
+

fn���fm���
��

� .

For �m��n, because �m+�n�0, the expression of �nm is
deduced. For �m=�n, the calculation is straightforward. The

general formula is found to be
�nm =
ci

�m + �n

 fn�0�fm�0�

�
+

fn���fm���
��

� +
1

2
��nm,

�39�

where �nm is the Kronecker symbol, or:

�nm = −
c

2

sinh 2	 + �− 1�n+m sinh 2	�

i��m + �n�
+

1

2
��nm. �40�

Modes are found to be nonorthogonal for the product
defined by Eq. �38�, but, as shown by Guyader,2 it is possible
to solve the problem from the knowledge of initial condi-
tions. When dissipation tends to zero �	r and 	�r tend to
zero�, the first term does not vanish, tending to �−1�
 1

2��n,�.
This is due to the choice of considering separately the modes
�n and ��.

Otherwise, formula �39� remains valid when one of the
modes is the constant mode f�x�=1, and the other one a non
constant mode:

�n = �
0

�

fn�x�dx = −
c

i�n

 fn�0�

�
+

fn���
��

�
= −

c

i�n
�sinh 	 + �− 1�n sinh 	�� . �41�

Finally, the product of the constant mode by itself is �.

3. Solution with respect to initial conditions

According to Eq. �37�, the initial conditions are:

p�x,0� = �
n

An cosh�i�nx/c + 	� + A; �42�

�tp�x,0� = �
n

Ani�n cosh�i�nx/c + 	� . �43�

Using Eq. �40� for a nonconstant mode m, the following
results are obtained:

�
0

�

p�x,0�fm�x�dx = �
n

An�nm + A�m; �44�

�
0

�

�tp�x,0�fm�x�dx = �
n

Ani�n�nm. �45�

Multiplying Eq. �44� by i�m, then adding Eq. �45�, leads to

�
0

�

�i�mp�x,0� + �tp�x,0��fm�x�dx

= i�
n

An��m + �n��nm + iA�m�m

= − c�ˆ An
 fn�0�fm�0�
�

+
fn���fm���

��
� + iAm��m, �46�
n



=− c
 fm�0�p�0,0�
�

+
fm���p��,0�

��
� + iAm��m. �47�

Notation �ˆ for the series in Eq. �46� indicates that it involves
the constant mode. As noticed by Guyader,2 this series is
related to the initial conditions at the two ends x=0 and x
=�. Thus for a nonconstant mode:

An�i�n = �
0

�

�i�np�x,0� + �tp�x,0��fn�x�dx

+ cp�0,0�sinh 	 + cp��,0��n sinh 	�. �48�

The following property is deduced from Eq. �27�: A�f��x�
=An

*fn
*�x�, thus p�x , t� is real. Calculating 	0

��tp�x ,0�dx, we
similarly get coefficient A:

A =
c−1	0

��tp�x,0�dx + p�0,0�tanh 	 + p��,0�tanh 	�

tanh 	 + tanh 	�

.

�49�

What is the condition for which this coefficient vanishes? If
for instance at x=0, � is zero, 	 is infinite, and, according to
the boundary condition, p�0,0� vanishes, thus A vanishes
too. This confirms the remark concerning result �26�.

Using the initial conditions for the Green function found
in Eq. �17�, it is possible to check result �26�, but this will be
done hereafter using the equation with source.

B. First-order system of equations, orthogonality, and
completeness of the modes

1. Introduction

In this section, we will prove that the modes form a
Riesz basis in the space of solutions of a closely related
problem, and give the expression of a scalar product making
the modes orthogonal. As an introduction, we show that a
modified scalar product leads to the orthogonality of modes,
except the constant one. For vibrating systems, the product
defined by Eq. �38� corresponds to the product with respect
to the mass, a complement being the calculation of the prod-
uct related to the stiffness �see, e.g., Meirovitch�:20

�nm� = �
0

�
d

dx
fn�x�

d

dx
fm�x�dx .

By integrating by parts, and using Eq. �39�, this product,
for n�m, is found to be equal to:

�nm� = �fn�x�dxfm�x��0
� +

�m
2

c2 �nm = −
�n�m

c2 �nm.

Therefore, the modes become orthogonal if we define a new
product, as follows:

�
0

� 
�xpn�xpm −
1

c2�tpn�tpm�
t=0

dx = �nm��n
2/c2, �50�

where pn= pn�x , t�= fn�x�exp�i�nt� and similarly for index
m. We remark that the modes pn and p�= �−1�
pn

* are or-

thogonal for this product. For the calculation of the solu-
tion from initial conditions, using Eq. �37� at t=0, the
following result is obtained:

�
0

� 
 d

dx
fn�x��xp�x,0� −

i�n

c2 fn�x��tp�x,0��dx = An

�n
2

c2 � .

�51�

As a consequence, the initial conditions need to be written by
using the derivatives of the function p�x , t� with respect to
abscissa and time, respectively. Result �48� can be checked
by integrating by parts the first term of the integral. Never-
theless, the product �50� is not useful for the constant mode,
and the first method needs to be used �see Subsection
VI A 3�. Moreover, this derivation does not prove that the
product is a scalar product, and that the modes form a basis
of the space of solutions of the problem. This will be done
hereafter.

2. Riesz basis of the modes

Several works have been done by mathematicians con-
cerning spectral operators when boundary conditions are not
simple conditions, such as Neumann or Dirichlet conditions.
We quote the work by Russell,21 Majda,22 Lagnese,23 Banks
et al.,24 Darmawijoyo and Van Horssen,7 and Cox and
Zuazua.6 Rideau4 has treated the 1D case with a �unique�
resistive termination, giving explicitly a scalar product �see
also Ref. 5�. We generalize his calculation using a similar
method, by considering the wave equation with source in the
following form:

�t��x,t� = A��x,t� + �s�x,t� , �52�

where ��x , t�= �p ,v�T, p and v / ��c� being the acoustic pres-
sure and velocity, respectively. Operator A is:

A = � 0 − c�x

− c�x 0
 , �53�

and boundary conditions are written as:

p�0,t� = − �v�0,t� and p��,t� = ��v��,t� " t . �54�

The family of eigenelements of A are found to satisfy:

�npn�x� = − c�xvn�x�; �nvn�x� = − c�xpn�x� , �55�

thus

�pn�x�
vn�x�

 = � cosh��nx/c + 	�
− sinh��nx/c + 	�

 �56�

�n = �− 	 − 	� + in��c/� = i�n �57�

�see Eq. �20��. pn�x�= fn�x� and �n are identical to the eigen-
functions and eigenvalues found before. Nevertheless, the
constant mode is eliminated �except for the very particular
case 	=−	��, because the boundary conditions are slightly
different: Eqs. �2� and �3� are obtained by deriving Eq. �54�
with respect to t. In Eq. �56�, the argument of the hyperbolic
functions can be written as:
�nx/c + 	 = ��x� + i�n�x�; �58�



��x� = − 	�rx/� + 	r�1 − x/��; �59�

�n�x� = ��− 
�x/� + 
�1 − x/���/2 + n�x/� . �60�

�See definitions �10� and �11��. Denoting �n
��x�

= �pn�x� ,vn�x��T, we show in the Appendix that the family of
elements �n

��x� is a Riesz basis, i.e., a complete basis of
elements, which become orthogonal for the following scalar
product:

��,��H
� = �

0

�

�T*G2��x��dx , �61�

where G��x� = �cosh ��x� sinh ��x�
sinh ��x� cosh ��x�

 . �62�

For a given vector �= �p ,v�T, the value of the scalar
product with eigenvector �n

� is found to be:

��,�n
��H

� = �
0

�

�p�x,t�pn�x� − v�x,t�vn�x��dx . �63�

This is in accordance with the product �50�. A direct
application of this result is the solution of Eq. �52� with
initial conditions ��x ,0�= �p�x ,0� ,v�x ,0��T. The modal de-
composition is uniquely determined as ��x , t�
=�nhn�t��n

��x� in the energy space H, and leads to the fol-
lowing family of decoupled ordinary differential equations:

���thn − �nhn� = ��s�x,t�,�n
��H

� ; �64�

hn�0� = ���x,0�,�n
��H

� . �65�

This result can be first applied to the calculation done in
Sec. VI A. In order to find a solution ��x , t� of the second-
order equation without source, we denote ��x , t�
= ��t��x , t� ,−c�x��x , t��T, and obtain by integrating ��x , t�
with respect to t:

��x,0� = �
n

�n
−1hn�0�pn�x� + A . �66�

Using Eqs. �65� and �63�, and replacing ��x , t� by p�x , t�,
pn�x� by fn�x�, �n by i�n, and �n

−1hn�0� by An, formula �51� is
checked. Notice that coefficient A cannot be directly deter-
mined with this method.

3. Example of the Green function

Similarly, the Green function can be calculated by using
the previous result. In order for the unknown function to
satisfy the boundary conditions �54�, or �2� and �3�, it is
convenient to define the following vectors:

��x,t� = � �tg�x,t�
− c�xg�x,t�

 ; �s�x,t� = �c2��x − x0���t�
0

 .
�67�
The first row of Eq. �52� is Eq. �1�, while the second one
comes from the definition of vector �. Using Eq. �64�, the
solution is found to be: ��x , t�=�n�n

��x�hn�t�, where

�thn − �nhn = c2�−1pn�x0���t� . �68�

The initial conditions for the Green function imply
��x , t�=0 for t�0, therefore hn�t�=0 for t�0. Thus, the
solution of Eq. �68� is

hn�t� = Ane�ntH�t�; An = c2�−1pn�x0� .

As a consequence,

� �tg�x,t�
− c�xg�x,t�

 = �
n

An�pn�x�
vn�x�

e�ntH�t� . �69�

Integrating the first row with respect to time leads to:

g�x,t� = H�t��
n

�Anpn�x�e�nt + A�x�� . �70�

Derivating this expression with respect to x and using the
second row of Eq. �69� leads to �xA�x�=0, thus A is a con-
stant, as expected. In order to deduce the value of this con-
stant, we need the following result:

�tg�x,0� = p�x,0� = c2��x − x0� . �71�

It is obtained by derivating the first row of Eq. �69� with
respect to time, and the second row of Eq. �69� with respect
to abscissa, leading to p�x ,0���t�=c2��x−x0���t� �recall that
�t�F�t�H�t��=H�t��tF�t�+F�0���t��. The end of the calcula-
tion is done in Sec. VI A 3, giving Eq. �49�, by replacing
p�x ,0� by g�x ,0� and taking into account that g�0,0�
=g�� ,0�=0. We notice that the calculation is valid for both
passive and active boundaries.

VII. EIGENMODES EXPANSION IN THE FREQUENCY
DOMAIN: BIORTHOGONALITY

Frequency domain approach is very popular in acoustics
�see, e.g., Ref. 7�, and leads to the use of biorthogonality
�see, e.g., Ref. 16, p. 884� of modes, except when the bound-
ary impedances are imaginary, corresponding to nondissipa-
tive boundaries: For that case, modes are orthogonal, and the
Laplacian operator is self-adjoint. In this section, we limit
the discussion to the Green function calculation, and succes-
sively use the two above-used approaches: The second-order
equation, then the system of two first-order equations, ignor-
ing the constant mode. Because we are now in the Fourier
domain, equations are ordinary differential equations, bior-
thogonality theory ensuring the completeness of the modes
family.

A. Solution of the second-order equation

1. Modal expansion

In order to calculate the inverse FT of G�x ,��, another
solution is possible: The expansion of G�x ,�� in eigen-
modes. This is done for a particular case by Filippi �Ref. 1 p.
58: This author considers another type of excitation instead
of the Dirac function, thus uses the Laplace transform instead

of the FT; notice that the constant mode is missing in this



work�. We will see how this method leads to the same poles
and residues that the direct method using the closed-form
expression �12�. We are searching for the following expan-
sion:

G�x,�� = �
n

Gn�x,�� , �72�

where the eigenmodes Gn�x ,�� are solutions of:

��xx
2 + �n

2���/c2�Gn�x,�� = 0, �73�

and satisfy the boundary conditions �7� and �8�. The key
point is that eigenmodes Gn�x ,�� and eigenfrequencies
�n��� depend on frequency �: This is due to the boundary
conditions, which are of Robin type. Solutions of Eq. �73�
can be written as follows:

Gn�x,�� = cosh�i�n���x/c + �n���� , �74�

where �n��� and �n��� are given by the boundary condi-
tions. Thus, they satisfy

�n���tanh �n��� = �/�; �75�

�n���tanh�i�n����/c + �n���� = − �/��. �76�

Eliminating quantity �n���, the eigenvalues are found to sat-
isfy the following equation:

tanh�i�n����/c�
�n��� +
�2

�n������
� = − �
1

�
+

1

��
� .

�77�

When �n��� and � are not simultaneously zero, this equation
can be rewritten as

e2i�n�/c = 
�n� − �

�n� + �
�
�n�� − �

�n�� + �
� . �78�

Calculation of all solutions of this equation is not nec-
essary, only one of them being useful in the following. Op-

erator D=�xx
2 is formally equal to its adjoint D̄, but the

boundary conditions are different �conditions for D̄ are com-

plex conjugate of conditions for D�. Modes of D̄ are the
complex conjugate of modes Gn�x ,�� �they are equal to
modes Gn�x ,�� only if � and �� are imaginary, because of the
factor i in boundary conditions �7� and �8��. Thus, in general,
operator D is not self-adjoint, and eigenmodes Gn�x ,�� and
Gn�x ,��=Gn

*�x ,�� are biorthogonal �see Ref. 16�. The scalar
product of modes Gn�x ,�� with Gm�x ,�� is simply given by:

�
0

�

Gm�x,��Gn�x,��dx = �n�nm, �79�

where

�n =
�

2

1 + c

sinh 2�i�n�/c + �n� − sinh 2�n

2i��n
� . �80�

Therefore modes Gn�x ,�� are orthogonal �for the prod-

uct �79�� and fulfill the same boundary conditions as G�x ,��,
contrary to resonance modes fn�x� in Eq. �29�. Finally, the
solution of Eq. �6� can be written as follows:

G�x,�� = c2�
n

Gn�x,��Gn�x0,��
�n��n

2��� − �2�
. �81�

2. Calculation of poles and residues

In order to calculate the inverse FT, the residue calculus
will be used again. The only terms of the series contributing
to poles verify:

�n��� = ± � . �82�

Looking at Eq. �78�, it can be seen that these two solu-
tions lead to the same equation for �. Rewriting Eq. �78� by
using Eqs. �75� and �76�, the resonance modes frequencies
are found to be solutions of Eq. �20�. Solutions �p of this
equation are the nonzero poles of the integral in the inverse
FT. Nevertheless, the pole �=0 exists again, because the
zero value satisfies Eq. �82�, the eigenvalue �n���=0 satis-
fying Eq. �77�.

It remains to calculate the residues. Starting with the
poles �p�0, we need to select in the series �81� the terms
involving poles. For a given �p, there are two terms. How-
ever, it appears that modes corresponding to �n and −�n are
identical. As a consequence, only one term of the series con-
tributes to the inverse FT: It will be denoted �p���. The
corresponding residue is found by expanding Eq. �81� for �
close to �p, as follows:

G�x,�� = c2 Gp�x,�p�Gp�x0,�p�

�p�2�p���p − ���1 − 
 d

d�
�p����

�=�p

 .

A similar expression can be found in Filippi,1 which points
out that Morse and Ingard �Ref. 7 p. 559� forgot the deriva-
tive. The same error is found in Morse and Feshbach �Ref.
16 p. 1347�, with another error in the derivation of Eq. �77�:
These authors treated the problem of a string with one non-
rigid �and resistive� support.

Actually, the derivative of �p���, denoted �p���� can be
calculated analytically, as follows. Taking the derivative of
Eq. �78� with respect to �, or more conveniently, taking the
logarithmic derivative of Eqs. �75� and �76�, the following
results are obtained:

1

�p
−

�p�

�p
=

2�p�

sinh 2�p
=

2�i�p��/c + �p��
sinh 2�i�p�/c + �p�

.

Thus, eliminating the derivative �p�, writing �p=�p and using
Eq. �80�, it is found after some algebra:

1 − �p� = �/2�p. �83�

Finally, for � close to �p:

G�x,�� = −
c2

�

Gp�x,�p�Gp�x0,�p�
�p�� − �p�

, �84�
which is in accordance with Eq. �23�.



Otherwise, for � close to 0, the solution ���� which is
close to 0, solution of Eq. �82�, satisfies the following equa-
tion, deduced from Eq. �77�:

�1 − �2/3 + O��4����2 + �2/������ = i���−1 + ��
−1� ,

where �=�� /c and �=�� /c. Therefore, �2 is of order �,
and

�2 = i�c�−1��−1 + ��
−1� + O��2� . �85�

Using Eq. �81�, the residue for the pole �=0 is obtained,
and Eq. �25� is confirmed. We conclude that the method of
the expansion of orthogonal modes in the Fourier domain
leads to the same result �Eq. �26�� than the “direct” method,
but the derivation is more delicate.

B. System of two first-order equations

We consider now the FT of Eq. �52�:

i���x,�� = A��x,�� + �s�x,�� , �86�

where ��x ,��= �P�x ,�� ,V�x ,���T. It is interesting that the
boundary conditions are independent of frequency:

P�0,�� = − �V�0,��; P��,�� = ��V��,�� . �87�

Eigenvalues �n and eigenvectors �n
� of operator A are

already known �see Eqs. �56� and �57��. The Appendix shows

that the adjoint operator of A, is Ā=−A, and gives the
boundary conditions for it. This formulation differs slightly
from the work,9,10 considering a different operator, but the
principle is identical: We notice that these authors treat the
problem for more general operators and boundary condi-

tions. Eigenvalues and eigenvectors of Ā are solutions of:

Ā�m
� = �m �m

� ,

pm = �vm for x = 0 pm = − ��vm for x = � .

Thus, the adjoint eigenvalue problem to be solved is the
same as the direct one, by replacing c by −c, 	 by −	 and 	�

by −	�. The eigenelements are thus found to be:

�m
� = �pm�x�

vm�x�
 = �cosh��mx/c + 	�

sinh��mx/c + 	�
 , �88�

where

�m = − �	 + 	� + im��c/� = �−m. �89�

Comparing with the family �n
� �Eq. �56��, there is a differ-

ence in sign for the second row: We notice that Rideau3

made an error in the biorthogonal family. By construction,
the biorthogonality relationship is ensured:

��n − �m
*� � �n

�, �m
� � = 0. �90�

Using Eq. �27�, we remark that �n=�m
* implies m=−�, as
defined in Eq. �28�. Therefore
��n
�,�m

�� = �
0

�

�m
� T*�n

�dx = �− 1�
��m,−�. �91�

This latter relation enables one to perform a modal decom-
position on the ��n

�� family: But, contrarily to standard cases,
the nth coefficient is not given by the scalar product with
�n

�, but by the scalar product with �−�n

� �up to the normal-
ization coefficient �−1�
��. Notice that if 	 and 	� are
both real, �m=�m

* , and Eq. �91� is obvious from the ex-
pressions of eigenvalues and eigenvectors �for this case,
�n=�m

* implies n=m�. For the general case, the scalar
product can be written: ��n

� ,�m
��=	0

�cos��n�x�+�−m�x��dx
= �−1�
	0

�cos���+m��x /��dx. Comparison with Eq. �A4�
exhibits the difference between the two methods.

It remains to apply orthogonality to Eq. �86�. We choose
the case of the Green function �Eq. �67��, with the following
result:

G�x,�� = −
c2

� �
n

fn�x�fx�x0�
��� − �n�

. �92�

The calculation is easy, because �n does not depend on fre-
quency. Comparison with Eq. �29� exhibits a difference in
the denominator, i.e., a factor � instead of �n, and, of course,
the absence of constant mode. When returning to the time
domain, all of the terms corresponding to �=�n are identi-
cal, and a constant mode is found for the pole �=0, but
again it is not possible to deduce it from orthogonality rela-
tions, as in Sec. VI B. Nevertheless, because of the indepen-
dence of the boundary conditions with respect to frequency,
the calculation of the residues is much easier than for the
second-order equation. For the same reason, the calculation
in the time domain would be possible with the same modal
decomposition, and this is a major difference with the meth-
ods based upon the second-order equation.

VIII. CONCLUSION

The simple problem we have studied, which can be re-
garded in particular as a radiation problem, exhibits interest-
ing properties for the resonance modes: They are complex
valued, and nonorthogonal for the simple product �38� be-
cause of the bounded character of the considered medium,
but except the constant mode, they are orthogonal for a prod-
uct modified in a proper way, and are a basis for the space of
solutions. Second-order equations allow one to find the con-
stant mode, while first-order systems of equations allow a
more direct formulation of boundary impedances.

Thanks to the simplicity of the problem, the analytical
treatment is possible with several methods, elucidating the
relationship between them, which can be useful for more
intricate problems �e.g., when damping is added to propaga-
tion, or when boundary impedances involve a mass or a
spring�. No approximations are needed, the results are valid
whatever the value of the terminal resistances. Active bound-
aries can also be considered, thanks to a change in functions.
We notice that an advantage of the frequency domain calcu-
lations is the possibility of the treatment of an arbitrary de-
pendence of the boundary conditions. For a dependence 	���

and 	����, Eq. �29� remains valid by replacing � by ��



− ic�	p�+	�p� ��, where 	p�= �d	 /d���=�p
, and similarly for 	�.

This can be shown by generalizing Eq. �22�, or, with some
algebra, using the modal expansion.

Finally, considering the problem of a stratified medium
�see Sec. II�, it could be deduced in the field outside of the
interval �0,��. When terminations are passive, a result is,
that modes tend to infinity when x tends to ±�. An interest-
ing study has been done in Ref. 13, using biorthogonality
and explaining the relation between the energy outside of the
interval and the terms responsible of nonorthogonality in Eq.
�39�.
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APPENDIX: PROOF OF THE COMPLETENESS OF
THE EIGENELEMENTS OF OPERATOR A

The operator A defined by Eq. �53� is a differential op-
erator defined on the energy space H=L2�0,���L2�0,��, it
has a compact resolvent �cf Ref. 4, p. 191�. Using the ordi-
nary scalar product �� ,��=	0

��pq*+vw*�dx, between
��x , t�= �p ,v�T and ��x , t�= �q ,w�T, the following result is
obtained:

�A�,�� + ��,A�� = − c�v�q* + ��w*��x=�

+ c�v�q* − �w*��x=0.

It is deduced that the adjoint operator of A is Ā=−A �we
denote all quantities related to the adjoint problem with an
overline�, and on its domain, the following adjoint boundary
conditions must be fulfilled:

q�0,t� = �*w�0,t� and q��,t� = − ��
*w��,t� " t .

�Here, �=�*, and ��=��
*; if � is infinite, the boundary condi-

tions are v�0, t�=0, and w�0, t�=0, and similarly for bound-
ary x=��. Therefore, A is skew symmetric, but not skew

adjoint, because the domains of A and Ā are different, ex-
cept if both � or �� are either zero or infinite �Dirichlet or
Neumann conditions�; notice that for a skew-adjoint opera-
tor, the eigenvalues are purely imaginary. In order to find a
new scalar product, we denote, from Eqs. �58�–�60�:

�n
��x� = � e��x� e−��x�

− e��x� e−��x� � ei�n�x�

e−i�n�x�  .

In H, the standard scalar product ��n
� ,�p

��H=	0
��pnpp

*

+vnvp
*�dx does not vanish for n�p, except if ��x�=0. If we

denote �n
0�x�, the functions corresponding to the latter case,

it is possible to construct a new scalar product ensuring or-
thogonality, in a similar way to Rideau.3 From Eq. �62�, the
following hyperbolic rotation is obtained:

�n
0�x� = G��x��n

��x� . �A1�
We will now prove that the new product
��,��H
� = �G��,G���H = �

0

�

�T*M��x��dx , �A2�

where M��x�=G�
TG�, leads to the orthogonality of the

modes. M��x� is found to be equal to G2�. It is symmetrical
and positive definite because

����H
��2 = ���p,v�T�H

��2

= �
0

�

�cosh�2��x����p�2 + �v�2�

+ 2 sinh�2��x��Re�pv*��dx

can be rewritten as:

����H
��2 =

1

2
�

0

�

�e2��x��p + v�2 + e−2��x��p − v�2�dx .

Moreover, ��x� is a function varying monotonously
from 	r to −	�r when x increases from 0 to �, and the fol-
lowing bounds can be found for ���H

� :

c����H � ���H
� � C� � ���H, �A3�

where c�=e−	̃ and C�=e	̃, with 	̃=sup��	r� , . �	�r��.
Therefore the modes �n

� are orthogonal for the new sca-
lar product �� ,��H

� . First, recall that ��n
0�n is the family of

eigenvectors of a classically skew-adjoint operator with com-
pact resolvent, it is thus complete in H. Now, thanks to Eq.
�A3�, the two norms are equivalent on H, and the hyperbolic
rotation shows that ��n

0�n and ��n
��n span the same subspace,

namely the whole of H. This proves the completeness of
��n

��n in H.
The calculation leads to the simple result:

��n
�,�m

��H
� = ��n

0,�m
0 �H = �

0

�

cos��n�x� − �m�x��dx

= �
0

�

cos��n − m��x/��dx = ��nm.

�A4�
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