184 research outputs found

    Evaluation of saccule function in patients with vitamin D deficiency

    Get PDF
    Background and Objectives: Considering important role of vitamin D in many physiological processes including vestibular system in the ear, aim of present study is to evaluate saccule function via cervical vestibular evoked myogenic potential (cVEMP), in patients with vitamin D deficiency. Subjects and Methods: After routine audiological tests, cVEMP were recorded in 15 patients with vitamin D deficiency and 16 normal subjects. The short tone burst (95 dB nHL, 500 Hz) was presented to ears. cVEMP was recorded with surface electromyography over the contracted ipsilateral sternocleidomastoid muscle. Results: Mean of p13, n13, interpeak latencies and amplitude ratios were measured in both groups. Statistical analysis did not show differences between two groups. Conclusions: Maybe serum 25-hydroxyvitamin D concentration was not low enough to have effect on saccule in the patients in present study or saccule have had low susceptibility to effects of vitamin D deficiency. For better judgment about effect of vitamin D deficiency on saccular function planning studies with high sample size is recommended. © 2019 The Korean Audiological Society and Korean Otological Society

    Research Article Solution of Two-dimensional Transient Heat Conduction in a Hollow Sphere under Harmonic boundary condition

    Get PDF
    Abstract: In this study, an analytical modeling of two dimensional heat conduction in a hollow sphere, subjected to time dependent periodic boundary condition at the inner and the outer surfaces, is performed. The thermo physical properties of the material are assumed to be isotropic and homogenous. Also, the effects of the temperature oscillations frequency on the boundaries, the thickness variation of the hollow sphere and thermo physical properties of the ambient and the sphere involved in some dimensionless numbers are studied. The results show that the obtained temperature distribution contains two characteristics, the dimensionless amplitude and the dimensionless phase difference. Comparison between the present results and the findings of the previous study as related to a twodimensional solution of the hollow sphere subjected to the simple harmonic condition shows a good agreement

    Sources, Occurrence and Characteristics of Fluorescent Biological Aerosol Particles Measured Over the Pristine Southern Ocean.

    Get PDF
    In this study, we investigate the occurrence of primary biological aerosol particles (PBAP) over all sectors of the Southern Ocean (SO) based on a 90-day data set collected during the Antarctic Circumnavigation Expedition (ACE) in austral summer 2016-2017. Super-micrometer PBAP (1-16 ”m diameter) were measured by a wide band integrated bioaerosol sensor (WIBS-4). Low (3σ) and high (9σ) fluorescence thresholds are used to obtain statistics on fluorescent and hyper-fluorescent PBAP, respectively. Our focus is on data obtained over the pristine ocean, that is, more than 200 km away from land. The results indicate that (hyper-)fluorescent PBAP are correlated to atmospheric variables associated with sea spray aerosol (SSA) particles (wind speed, total super-micrometer aerosol number concentration, chloride and sodium concentrations). This suggests that a main source of PBAP over the SO is SSA. The median percentage contribution of fluorescent and hyper-fluorescent PBAP to super-micrometer SSA was 1.6% and 0.13%, respectively. We demonstrate that the fraction of (hyper-)fluorescent PBAP to total super-micrometer particles positively correlates with concentrations of bacteria and several taxa of pythoplankton measured in seawater, indicating that marine biota concentrations modulate the PBAP source flux. We investigate the fluorescent properties of (hyper-)fluorescent PBAP for several events that occurred near land masses. We find that the fluorescence signal characteristics of particles near land is much more variable than over the pristine ocean. We conclude that the source and concentration of fluorescent PBAP over the open ocean is similar across all sampled sectors of the SO

    Fermions and Loops on Graphs. I. Loop Calculus for Determinant

    Full text link
    This paper is the first in the series devoted to evaluation of the partition function in statistical models on graphs with loops in terms of the Berezin/fermion integrals. The paper focuses on a representation of the determinant of a square matrix in terms of a finite series, where each term corresponds to a loop on the graph. The representation is based on a fermion version of the Loop Calculus, previously introduced by the authors for graphical models with finite alphabets. Our construction contains two levels. First, we represent the determinant in terms of an integral over anti-commuting Grassman variables, with some reparametrization/gauge freedom hidden in the formulation. Second, we show that a special choice of the gauge, called BP (Bethe-Peierls or Belief Propagation) gauge, yields the desired loop representation. The set of gauge-fixing BP conditions is equivalent to the Gaussian BP equations, discussed in the past as efficient (linear scaling) heuristics for estimating the covariance of a sparse positive matrix.Comment: 11 pages, 1 figure; misprints correcte

    Asynchronous Decentralized Task Allocation for Dynamic Environments

    Get PDF
    This work builds on a decentralized task allocation algorithm for networked agents communicating through an asynchronous channel, by extending the Asynchronous Consensus-Based Bundle Algorithm (ACBBA) to account for more real time implementation issues resulting from a decentralized planner. This paper specfically talks to the comparisons between global and local convergence in asynchronous consensus algorithms. Also a feature called asynchronous replan is introduced to ACBBA's functionality that enables e ffcient updates to large changes in local situational awareness. A real-time software implementation using multiple agents communicating through the user datagram protocol (UDP) validates the proposed algorithm.United States. Air Force (grant FA9550-08-1-0086)United States. Air Force Office of Scientific Research (grant FA9550-08-1-0086)Aurora Flight Sciences Corp. (SBIR - FA8750-10-C-0107

    Sources and nature of ice-nucleating particles in the free troposphere at Jungfraujoch in winter 2017

    Get PDF
    Primary ice formation in mixed-phase clouds is initiated by a minute subset of the ambient aerosol population, called ice-nucleating particles (INPs). The knowledge about their atmospheric concentration, composition, and source in cloud-relevant environments is still limited. During the 2017 joint INUIT/CLACE (Ice Nuclei research UnIT/CLoud–Aerosol Characterization Experiment) field campaign, observations of INPs as well as of aerosol physical and chemical properties were performed, complemented by source region modeling. This aimed at investigating the nature and sources of INPs. The campaign took place at the High-Altitude Research Station Jungfraujoch (JFJ), a location where mixed-phase clouds frequently occur. Due to its altitude of 3580 m a.s.l., the station is usually located in the lower free troposphere, but it can also receive air masses from terrestrial and marine sources via long-range transport. INP concentrations were quasi-continuously detected with the Horizontal Ice Nucleation Chamber (HINC) under conditions representing the formation of mixed-phase clouds at −31 ∘C. The INP measurements were performed in parallel to aerosol measurements from two single-particle mass spectrometers, the Aircraft-based Laser ABlation Aerosol MAss Spectrometer (ALABAMA) and the laser ablation aerosol particle time-of-flight mass spectrometer (LAAPTOF). The chemical identity of INPs is inferred by correlating the time series of ion signals measured by the mass spectrometers with the time series of INP measurements. Moreover, our results are complemented by the direct analysis of ice particle residuals (IPRs) by using an ice-selective inlet (Ice-CVI) coupled with the ALABAMA. Mineral dust particles and aged sea spray particles showed the highest correlations with the INP time series. Their role as INPs is further supported by source emission sensitivity analysis using atmospheric transport modeling, which confirmed that air masses were advected from the Sahara and marine environments during times of elevated INP concentrations and ice-active surface site densities. Indeed, the IPR analysis showed that, by number, mineral dust particles dominated the IPR composition (∌58 %), and biological and metallic particles are also found to a smaller extent (∌10 % each). Sea spray particles are also found as IPRs (17 %), and their fraction in the IPRs strongly varied according to the increased presence of small IPRs, which is likely due to an impact from secondary ice crystal formation. This study shows the capability of combining INP concentration measurements with chemical characterization of aerosol particles using single-particle mass spectrometry, source region modeling, and analysis of ice residuals in an environment directly relevant for mixed-phase cloud formation.</p

    Exactness of Belief Propagation for Some Graphical Models with Loops

    Full text link
    It is well known that an arbitrary graphical model of statistical inference defined on a tree, i.e. on a graph without loops, is solved exactly and efficiently by an iterative Belief Propagation (BP) algorithm convergent to unique minimum of the so-called Bethe free energy functional. For a general graphical model on a loopy graph the functional may show multiple minima, the iterative BP algorithm may converge to one of the minima or may not converge at all, and the global minimum of the Bethe free energy functional is not guaranteed to correspond to the optimal Maximum-Likelihood (ML) solution in the zero-temperature limit. However, there are exceptions to this general rule, discussed in \cite{05KW} and \cite{08BSS} in two different contexts, where zero-temperature version of the BP algorithm finds ML solution for special models on graphs with loops. These two models share a key feature: their ML solutions can be found by an efficient Linear Programming (LP) algorithm with a Totally-Uni-Modular (TUM) matrix of constraints. Generalizing the two models we consider a class of graphical models reducible in the zero temperature limit to LP with TUM constraints. Assuming that a gedanken algorithm, g-BP, funding the global minimum of the Bethe free energy is available we show that in the limit of zero temperature g-BP outputs the ML solution. Our consideration is based on equivalence established between gapless Linear Programming (LP) relaxation of the graphical model in the T→0T\to 0 limit and respective LP version of the Bethe-Free energy minimization.Comment: 12 pages, 1 figure, submitted to JSTA

    On the exactness of the cavity method for Weighted b-Matchings on Arbitrary Graphs and its Relation to Linear Programs

    Full text link
    We consider the general problem of finding the minimum weight b-matching on arbitrary graphs. We prove that, whenever the linear programming relaxation of the problem has no fractional solutions, then the cavity or belief propagation equations converge to the correct solution both for synchronous and asynchronous updating

    Participatory Modeling for Analyzing Interactions Between High‐Priority Sustainable Development Goals to Promote Local Sustainability

    Get PDF
    Achieving the Sustainable Development Goals (SDGs) is challenging given the complex interactions between different SDGs and their spillover effects. We developed a system dynamics model—the Local Environmental and Socio-Economic Model (LESEM)—to analyze and quantify context-based SDG interactions at the local scale using a participatory model co-design process with local stakeholders. The LESEM was developed for the Goulburn-Murray Irrigation District in Victoria, Australia, to assist policymakers in analyzing local issues with a more integrated and holistic approach to sustainable development at the local scale. The process of participatory systems dynamics modeling facilitates integrated and strategic decision-making and can help local policymakers identify and quantify potential trade-offs and synergies that benefit multiple SDGs, which eventually leads local communities toward sustainability. We present an illustrative application of the model that quantifies SDG interactions across four high-priority SDGs, namely clean water and sanitation (SDG 6), zero hunger (SDG 2), economic growth (SDG 8), and life on land (SDG 15). We illustrate the use of the model in assessing key SDG indicator trajectories under a business-as-usual (BAU) scenario from 2010 to 2050. Under the BAU, agri-food production increased despite a decline in water resource availability, with gains driven by intensification and increased agricultural productivity. This boosted local prosperity and reduced the amount of agricultural land required to meet future agri-food demand, thereby reducing pressures on terrestrial ecosystems and creating the space for ecological restoration and carbon storage in soils and biomass. However, agricultural intensification impacted water quality through increases in algal blooms and river salinity
    • 

    corecore