768 research outputs found
Ostracoda: database for the Neogene of Portugal
The "Ostracoda: database for the Neogene of Portugal", prepared under the Project "POCTl/36531/PAL/2000 - Studies on
Portuguese Palaeontology / Post-Paleozoic", is presented. It provides information about 158 especies that have been recognized in
sections and boreholes concerning Neogene units in Portugal
A Wide Database for a Multicenter Study on Pneumocystis jirovecii Pneumonia in Intensive Care Units
Pneumocystis jirovecii pneumonia (PJP) is an opportunistic fungal infection that may affect patients with immunosuppression. In order to improve the diagnosis accuracy for PJP, facilitating the collection of data across Europe to reliably assess the performance of diagnostic tests for PJP is essential to improve the care of critically ill patients developing this severe condition. Such large data can be collected thanks to the contribution of several European hospitals in the compilation of a dedicated electronic Case Report Form (eCRF). The main focus of this work is to create an interface with high ergonomics both in the compilation and in the subsequent validation of the records
hTERT Transduction Extends the Lifespan of Primary Pediatric Low-Grade Glioma Cells While Preserving the Biological Response to NGF
The neurotrophin nerve growth factor (NGF) modulates the growth of human gliomas and is able to induce cell differentiation through the engagement of tropomyosin receptor kinase A (TrkA) receptor, although the role played in controlling glioma survival has proved controversial. Unfortunately, the slow growth rate of low-grade gliomas (LGG) has made it difficult to investigate NGF effects on these tumors in preclinical models. In fact, patient-derived low-grade human astrocytoma cells duplicate only a limited number of times in culture before undergoing senescence. Nevertheless, replicative senescence can be counteracted by overexpression of hTERT, the catalytic subunit of telomerase, which potentially increases the proliferative potential of human cells without inducing cancer-associated changes. We have extended, by hTERT transduction, the proliferative in vitro potential of a human LGG cell line derived from a pediatric pilocytic astrocytoma (PA) surgical sample. Remarkably, the hTERT-transduced LGG cells showed a behavior similar to that of the parental line in terms of biological responses to NGF treatment, including molecular events associated with induction of NGF-related differentiation. Therefore, transduction of LGG cells with hTERT can provide a valid approach to increase the in vitro life-span of patient-derived astrocytoma primary cultures, characterized by a finite proliferative potential
Characterization of ripe fruit epidermis-specific transcription factors in strawberry
Transcriptome changes during strawberry fruit ripening have been previously reported using either complete fruits or achenes (actual fruits) and receptacles (fleshy part) separately. In order to perform a more detailed study, we have performed a tissue- and stage-specific transcriptome analysis in receptacles of Fragaria vesca fruits, allowing us to infer Gene Regulatory Networks (GRN) in each tissue and stage. In the study, we have focused on the epidermis at the ripe stage, since it plays an important role in defense, as it is the external cell layer in direct contact with the environment, and, in contrast to receptacles of the commercial species, it is the only part of the fruit that accumulates anthocyanins. MapMan analysis of the GRN in ripe epidermis showed that wax and flavonoid biosynthesis were significantly overrepresented functions. Three out of the several TFs found among the main hubs in this GRN were selected to study their biological role, one of them belonging to the MYB family, and two bHLH genes. Protein interaction assays revealed that the MYB protein physically interacts with the two bHLHs, leading to the subcellular relocalization from the cytoplasm to the nucleus in one of them. DAP-seq analyses showed that the bHLH TFs do not bind DNA by themselves, but that genes involved in cuticle formation and flavonoid biosynthesis are among the MYB targets, which were validated by a transactivation assay using the Luciferase/Renilla system. Consistently, MYB-overexpressing stable lines exhibited an upregulation of genes related to cuticle and wax biosynthesis in ripe fruits, and an accumulation of higher amounts of epicuticular waxes in young leaves compared to the WT. We are currently establishing RNAi and CRISPR lines for these three ripe-epidermis specific TFs to further investigate their biological role and performing analyses to understand the effect on gene expression of the interaction between them.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
The adaptation of the main floor of the Palace Melo e Abreu (18th century) to an infirmary of the old asylum of mendicity: history and tile panels compositional characterization
Due to its sunny location and mild climate, the hill of Sant'Ana in Lisbon was, since early times,
the place of construction of religious and civil buildings. In the eighteenth century, near the former
Santo António dos Capuchos Convent (later Hospital – HSAC), a Baroque palace was erected and
later on rebuilt by the Melo e Abreu family (later Condes de Murça in the 19th century), whose noble
rooms were decorated by a set of high quality tiles, concerned with iconographic and plasticity
aspects.
The transfer of the Melo e Abreu family to the parish of Santos-o-Velho and subsequent
founding of the Asilo da Mendicidade, allowed the purchase of the building in order to expand the
assistance space. Currently, the palace serves hospital’s needs, with all the constraints resulting from
the cohabitation between cultural heritage and professional medical care day life.
Thus, Palace Melo e Abreu is a good case study, not only for the functional changes that it has
been subjected to, but also for the rehabilitation measures for structural restoration and conservation
made over time. For the assessment of its importance in terms of both heritage and scientific history,
we will present an interdisciplinary study, including History of Art and Archaeometry;
In this work (together with the history of the adaptation of the main floor of the Palace Melo e
Abreu to an infirmary of the old asylum of mendacity) a first stage of the archaeometric approach is
presented, comprising the compositional characterization (chemical and mineralogical) of both mortar
and glazed tile body of selected panels. We believe that this paper will promote a deep reflection
about the safeguard and future heritage policies of this kind of Lisbon's hospitals.info:eu-repo/semantics/publishedVersio
Kinetic evidence of a rapid activation of phosphatidylcholine hydrolysis by Ki-ras oncogene. Possible involvement in late steps of the mitogenic cascade.
A novel phospholipase C specific for phosphatidylcholine has been shown to be activated by several agonists. Also, recent evidence suggests that transformation mediated by the ras oncogene possibly involves the activation of this novel phospholipid degradative pathway which would account for the increased diacylglycerol levels associated with transformation. Here we use a mutant of Ki-ras which is temperature-sensitive for transformation to investigate the kinetics of activation of the phosphodiesterase-mediated turnover of phosphatidylcholine. Upon shift to the permissive temperature, products of the activated phosphatidylcholine-specific phospholipase C were detected by 30 min and reached maximal levels by 1-2 h. These results suggest that the product of the ras oncogene rapidly activates the phosphodiesteratic hydrolysis of phosphatidylcholine. Furthermore, the fact that at least 4 h are required for serum to activate this phospholipase C strongly suggests that the ras oncogene product might be involved in late steps of the mitogenic signaling cascade.post-print758 K
Characterization of ripe fruit epidermis-specific transcription factors in strawberry
Transcriptome changes during strawberry fruit ripening have been previously reported using either complete fruits or achenes (actual fruits) and receptacles (fleshy part) separately. In order to perform a more detailed study, we have performed a tissue- and stage-specific transcriptome analysis in receptacles of Fragaria vesca fruits, allowing us to infer Gene Regulatory Networks (GRN) in each tissue and stage. In the study, we have focused on the epidermis at the ripe stage, since it plays an important role in defense, as it is the external cell layer in direct contact with the environment, and, in contrast to receptacles of the commercial species, it is the only part of the fruit that accumulates anthocyanins. MapMan analysis of the GRN in ripe epidermis showed that wax and flavonoid biosynthesis were significantly overrepresented functions. Three out of the several TFs found among the main hubs in this GRN were selected to study their biological role, one of them belonging to the MYB family, and two bHLH genes. Protein interaction assays revealed that the MYB protein physically interacts with the two bHLHs, leading to the subcellular relocalization from the cytoplasm to the nucleus in one of them. DAP-seq analyses showed that the bHLH TFs do not bind DNA by themselves, but that genes involved in cuticle formation and flavonoid biosynthesis are among the MYB targets, which were validated by a transactivation assay using the Luciferase/Renilla system. Consistently, MYB-overexpressing stable lines exhibited an upregulation of genes related to cuticle and wax biosynthesis in ripe fruits, and an accumulation of higher amounts of epicuticular waxes in young leaves compared to the WT. We are currently establishing RNAi and CRISPR lines for these three ripe-epidermis specific TFs to further investigate their biological role and performing analyses to understand the effect on gene expression of the interaction between them.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tec
Characterization of ripe fruit epidermis-specific transcription factors in strawberry
The epidermis is the external cell layer in direct contact with the environment, and it plays essential biological roles. Transcriptome analysis (RNA-seq) of Fragaria vesca fruit receptacles at four ripening stages (green, white, turning and red) and of different tissue types of receptacles (pith, vascular bundles, cortex and epidermis) at two ripening stages (green and red) allowed us to infer tissue- and stage-specific Gene Regulatory Networks (GRN). Due to the potential role of the epidermis in defense and in the differential anthocyanin accumulation pattern that shows at the ripe stage of F. vesca fruits (the skin is red, while the inner part is white), we have focused on the GRN of the ripe epidermis. In this study, we aim at the functional characterization of two transcription factors (TFs) that constituted the main hubs of this GRN: a MYB-like gene, and a member of the NAC family of TFs. A MapMan analysis of the genes constituting the GRN in ripe epidermis showed that wax and flavonoid biosynthesis were significantly overrepresented functions in this tissue at the ripe stage. Using the Luciferase/Renilla (Luc/Ren) system, the interaction of the MYB and NAC TFs with their wax-related putative targets was validated. To gain insight into the target genes of these two TFs, we mapped the genome-wide binding sites using DAP-seq analyses. Consistently, MYB bound to a set of genes involved in cuticle formation and flavonoid biosynthesis, while a number of genes involved in solute transport were enriched among the NAC targets. Currently, we are generating CRISPR/Cas9 mutant lines to functionally characterize these two TFs. Furthermore, we are performing protein interaction assays to decipher whether the MYB and NAC TFs interact with each other and with other TFs from the red epidermis GRN.Universidad de Málaga. Campus de Excelencia Internacional AndalucĂa Tech
- …