237 research outputs found

    A flume experiment on the effect of constriction shape on the formation of forced pools

    Get PDF
    A series of 18 flume runs were conducted in a 6-m long, 0.5-m wide recirculating flume with a bed gradient of 0.8% to determine the influence of obstruction shape on the formation and characteristics of forced pools. Six different-shaped obstructions were added to the flume with the maximum width of the obstruction held constant at 20 cm, which equaled a 40% constriction of flow. The obstruction shapes used included a square, a rectangle, a right triangle with the hypotenuse-facing upstream, a right triangle with the hypotenuse-facing downstream, a combination of a square and triangle with the hypotenuse-facing upstream, and a rectangle and semi-circle shape. Three flume runs were conducted with each obstruction shape. A profile of the flume bed was taken after each experiment and a grid measurement of bed elevations for the last run were conducted to create topographic maps of the flume bed to compare pool-riffle morphologies. ANOVA results indicate pool depth, pool location, and the distance between the pool center and the riffle crest all vary with the obstruction shape. Obstructions with a more blunt upstream face created deeper pools, more total scour and longer pool-riffle sequence lengths than pools formed by obstructions with a more gradual narrowing of flow. The increased volume of scour associated with obstructions that rapidly narrow flow also creates larger volume riffles that cover a greater extent of the channel bed

    A Budding-Defective M2 Mutant Exhibits Reduced Membrane Interaction, Insensitivity To Cholesterol, And Perturbed Interdomain Coupling

    Get PDF
    Influenza A M2 is a membrane-associated protein with a C-terminal amphipathic helix that plays a cholesterol-dependent role in viral budding. An M2 mutant with alanine substitutions in the C-terminal amphipathic helix is deficient in viral scission. With the goal of providing atomic-level understanding of how the wild-type protein functions, we used a multipronged site-directed spin labeling electron paramagnetic resonance spectroscopy (SDSL-EPR) approach to characterize the conformational properties of the alanine mutant. We spin-labeled sites in the transmembrane (TM) domain and the C-terminal amphipathic helix (AH) of wild-type (WT) and mutant M2, and collected information on line shapes, relaxation rates, membrane topology, and distances within the homotetramer in membranes with and without cholesterol. Our results identify marked differences in the conformation and dynamics between the WT and the alanine mutant. Compared to WT, the dominant population of the mutant AH is more dynamic, shallower in the membrane, and has altered quaternary arrangement of the C-terminal domain. While the AH becomes more dynamic, the dominant population of the TM domain of the mutant is immobilized. The presence of cholesterol changes the conformation and dynamics of the WT protein, while the alanine mutant is insensitive to cholesterol. These findings provide new insight into how M2 may facilitate budding. We propose the AH–membrane interaction modulates the arrangement of the TM helices, effectively stabilizing a conformational state that enables M2 to facilitate viral budding. Antagonizing the properties of the AH that enable interdomain coupling within M2 may therefore present a novel strategy for anti-influenza drug design

    Artificial Aurora Produced by HAARP

    Get PDF
    We present results from the ionospheric heating experiment conducted at the HighFrequency Active Auroral Research Program (HAARP) facility, Alaska, on 12 March 2013. During theexperiment, HAARP transmitted in the direction of the magnetic zenith X-mode 4.57-MHz wave. Thetransmitted power was modulated with the frequency of 0.9 mHz, and it was pointed on a 20-km spot at thealtitude of 120 km. The heating (1) generates disturbances in the magnetic field detected with the fluxgatemagnetometer on the ground and (2) produces bright luminous spots in the ionosphere, observed with theHAARP telescope. Numerical simulations of the 3-D reduced magnetohydrodynamic (MHD) model revealthat these effects can be related to the magnetic field-aligned currents, excited in the ionosphere bychanging the conductivity in theEregion when the large-scale electric field exists in the heating region

    A Titanium Nitride Absorber for Controlling Optical Crosstalk in Horn-Coupled Aluminum LEKID Arrays for Millimeter Wavelengths

    Full text link
    We discuss the design and measured performance of a titanium nitride (TiN) mesh absorber we are developing for controlling optical crosstalk in horn-coupled lumped-element kinetic inductance detector arrays for millimeter-wavelengths. This absorber was added to the fused silica anti-reflection coating attached to previously-characterized, 20-element prototype arrays of LEKIDs fabricated from thin-film aluminum on silicon substrates. To test the TiN crosstalk absorber, we compared the measured response and noise properties of LEKID arrays with and without the TiN mesh. For this test, the LEKIDs were illuminated with an adjustable, incoherent electronic millimeter-wave source. Our measurements show that the optical crosstalk in the LEKID array with the TiN absorber is reduced by 66\% on average, so the approach is effective and a viable candidate for future kilo-pixel arrays.Comment: 7 pages, 5 figures, accepted for publication in the Journal of Low Temperature Physic

    Horn-Coupled, Commercially-Fabricated Aluminum Lumped-Element Kinetic Inductance Detectors for Millimeter Wavelengths

    Get PDF
    We discuss the design, fabrication, and testing of prototype horn-coupled, lumped-element kinetic inductance detectors (LEKIDs) designed for cosmic microwave background (CMB) studies. The LEKIDs are made from a thin aluminum film deposited on a silicon wafer and patterned using standard photolithographic techniques at STAR Cryoelectronics, a commercial device foundry. We fabricated twenty-element arrays, optimized for a spectral band centered on 150 GHz, to test the sensitivity and yield of the devices as well as the multiplexing scheme. We characterized the detectors in two configurations. First, the detectors were tested in a dark environment with the horn apertures covered, and second, the horn apertures were pointed towards a beam-filling cryogenic blackbody load. These tests show that the multiplexing scheme is robust and scalable, the yield across multiple LEKID arrays is 91%, and the noise-equivalent temperatures (NET) for a 4 K optical load are in the range 26\thinspace\pm6 \thinspace \mu \mbox{K} \sqrt{\mbox{s}}

    The Detector System for the Stratospheric Kinetic Inductance Polarimeter (SKIP)

    Get PDF
    The Stratospheric Kinetic Inductance Polarimeter (SKIP) is a proposed balloon-borne experiment designed to study the cosmic microwave background, the cosmic infrared background and Galactic dust emission by observing 1133 square degrees of sky in the Northern Hemisphere with launches from Kiruna, Sweden. The instrument contains 2317 single-polarization, horn-coupled, aluminum lumped-element kinetic inductance detectors (LEKID). The LEKIDs will be maintained at 100 mK with an adiabatic demagnetization refrigerator. The polarimeter operates in two configurations, one sensitive to a spectral band centered on 150 GHz and the other sensitive to 260 and 350 GHz bands. The detector readout system is based on the ROACH-1 board, and the detectors will be biased below 300 MHz. The detector array is fed by an F/2.4 crossed-Dragone telescope with a 500 mm aperture yielding a 15 arcmin FWHM beam at 150 GHz. To minimize detector loading and maximize sensitivity, the entire optical system will be cooled to 1 K. Linearly polarized sky signals will be modulated with a metal-mesh half-wave plate that is mounted at the telescope aperture and rotated by a superconducting magnetic bearing. The observation program consists of at least two, five-day flights beginning with the 150 GHz observations.Comment: J Low Temp Phys DOI 10.1007/s10909-013-1014-3 The final publication is available at link.springer.co
    • …
    corecore