75 research outputs found

    Optimizing the Model of the Viking-400 UAS

    Get PDF
    This project intends to update and redesign imperfections in the scanned 3D CAD model of the Viking 400 aircraft. This aircraft, similar to the Sierra-B UAS, will carry payloads of scientific instruments for research purposes. The goals of this project are to modify the current scanned model such that it better represents the physical qualities of the aircraft, as well as creating the features that are missing from the model. As the model was imported from a different software, many of the critical surfaces did not accurately reflect the actual aircraft. Those parts of the model were redesigned entirely so that they can be edited for future use, as well as correctly representing the aircraft as it is now. Additionally, parts of the aircraft that did not appear in the scanned model were designed and added to the new model. In order to prioritize ease of use for future missions, the model has been reorganized in a logical fashion that enables modification of specific parts of the aircraft. The organization of this model imitates the drawing tree of the Sierra-B, with the intention of maintaining a functional system of redesign, analysis, and implementation. Ultimately, this project will be a catalyst for making Viking 400 into a functional aircraft and increasing scientific research in airborne vehicles

    A Face Versus Non-Face Context Influences Amygdala Responses to Masked Fearful Eye Whites

    Get PDF
    The structure of the mask stimulus is crucial in backward masking studies and we recently demonstrated such an effect when masking faces. Specifically, we showed that activity of the amygdala is increased to fearful facial expressions masked with neutral faces and decreased to fearful expressions masked with a pattern mask—but critically both masked conditions discriminated fearful expressions from happy expressions. Given this finding, we sought to test whether masked fearful eye whites would produce a similar profile of amygdala response in a face vs non-face context. During functional magnetic resonance imaging scanning sessions, 30 participants viewed fearful or happy eye whites masked with either neutral faces or pattern images. Results indicated amygdala activity was increased to fearful vs happy eye whites in the face mask condition, but decreased to fearful vs happy eye whites in the pattern mask condition—effectively replicating and expanding our previous report. Our data support the idea that the amygdala is responsive to fearful eye whites, but that the nature of this activity observed in a backward masking design depends on the mask stimulus

    Polarization-dependent optomechanics mediated by chiral microresonators.

    Get PDF
    Chirality is one of the most prominent and intriguing aspects of nature, from spiral galaxies down to aminoacids. Despite the wide range of living and non-living, natural and artificial chiral systems at different scales, the origin of chirality-induced phenomena is often puzzling. Here we assess the onset of chiral optomechanics, exploiting the control of the interaction between chiral entities. We perform an experimental and theoretical investigation of the simultaneous optical trapping and rotation of spherulite-like chiral microparticles. Due to their shell structure (Bragg dielectric resonator), the microparticles function as omnidirectional chiral mirrors yielding highly polarization-dependent optomechanical effects. The coupling of linear and angular momentum, mediated by the optical polarization and the microparticles chiral reflectance, allows for fine tuning of chirality-induced optical forces and torques. This offers tools for optomechanics, optical sorting and sensing and optofluidics

    Optical determination of flexoelectric coefficients and surface polarization in a hybrid aligned nematic cell

    Get PDF
    A. Mazzulla, F. Ciuchi, and J. Roy Sambles, Physical Review E, Vol. 64, article 021708 (2001). "Copyright © 2001 by the American Physical Society."We present an optical study of the influence of both the flexoelectric effect and surface polarization on a hybrid-aligned nematic cell using the half-leaky guided mode technique. Tilt angle profiles, obtained from fits of experimental data (reflectivity curves) taken under applied voltages, are compared with the ones derived by a complete theoretical model. Measurements with an applied alternating voltage allow the evaluation of the anchoring energy by solving the torque balance equation at the planar surface. From measurements with static fields, the sum of flexoelectric coefficients and the surface polarization are determined by numerical solution of Euler-Lagrange equations

    Histone demethylase JmjD2A regulates neural crest specification.

    Get PDF
    The neural crest is a multipotent stem cell-like population that is induced during gastrulation, but only acquires its characteristic morphology, migratory ability, and gene expression profile after neurulation. This raises the intriguing possibility that precursors are actively maintained by epigenetic influences in a stem cell-like state. Accordingly, we report that dynamic histone modifications are critical for proper temporal control of neural crest gene expression in vivo. The histone demethylase, JumonjiD2A (JmjD2A/KDM4A), is expressed in the forming neural folds. Loss of JmjD2A function causes dramatic downregulation of neural crest specifier genes analyzed by multiplex NanoString and in situ hybridization. Importantly, in vivo chromatin immunoprecipitation reveals direct stage-specific interactions of JmjD2A with regulatory regions of neural crest genes, and associated temporal modifications in methylation states of lysine residues directly affected by JmjD2A activity. Our findings show that chromatin modifications directly control neural crest genes in vertebrate embryos via modulating histone methylation

    Fractal aggregates evolution of methyl red in liquid crystal

    No full text
    The spontaneous formation of dendritic aggregates is observed in a two-dimensional confined layered system consisting of a film composed of liquid crystal, dye and solvent cast above a polymer substrate. The observed aggregates are promoted by phase separation processes induced by dye diffusion and solvent evaporation. The growth properties of the aggregates are studied through the temporal evolution of their topological properties (surface, perimeter, fractal dimension). The fractal dimension of the completely formed structures, when they are coexistent with different types of structures, is consistent with theoretical and experimental values obtained for Diffusion-Limited Aggregates. Under different experimental conditions (temperature and local dye concentration) the structure forms without interactions with other kinds of structures, and its equilibrium fractal dimension is smaller. The fractal dimension is thus not a universal property of the observed structures, but rather depends on the experimental conditions

    Amino acid composition of two peptides purified from mitochondrial calf liver DNA.

    No full text
    • …
    corecore