5 research outputs found

    The Online Error Control and Handling of the ALICE Pixel Detector

    Get PDF
    The SPD forms the two innermost layers of the ALICE Inner Tracking System (ITS) [1]. The basic building block of the SPD is the half-stave, the whole SPD barrel being made of 120 half-staves with a total number of 9.8 x 106 readout channels. Each half-stave is connected via three optical links to the off-detector electronics made of FPGA based VME readout cards (Routers). The Routers and their mezzanine cards provide the zero-suppression, data formatting and multiplexing and the link to the DAQ [2] system. This paper presents the hardware and software tools developed to detect and process any errors, at the level of the Router, originating from either front-end electronics, trigger sequences, DAQ or the off-detector electronics. The on-line error handling system automatically transmits this information to the Detector Control System and to the dedicated ORACLE database for further analysis

    Hyperspectral Sensing Techniques Applied to Bio-masses Characterization: The Olive Husk Case

    Full text link
    Olive husk (OH) quality, in respect of constituting particles characteristics (olive stones and pulp residues as result after pressing), represents an important issue. OH particles size class distribution and composition play, in fact, an important role for OH utilization as: organic amendment, bio-mass, food ingredient, plastic filler, abrasive, raw material in the cosmetic sector, dietary animal supplementation, etc. . OH is characterised by a strong variability according to olive characteristics and olive oil production process. Actually it does not exist any strategy able to quantify OH chemical-physical attributes versus its correct utilisation adopting simple, efficient and low costs analytical tools. Furthermore the possibility to perform its continuous monitoring, without any samples collection and analysis at laboratory scale, could strongly enhance OH utilization, with a great economic and environmental benefits. In this paper an analytical approach, based on HyperSpectral Imaging (HSI) is presented. HSI allows to perform, also on-line, a full quantification of OH characteristics in order to qualify this product for its further re-use, with particular reference as bio-mass. HSI was applied to different samples of OH, characterized by different moisture, different residual pulp content and different size class distributions. Results are presented and critically evaluated. © 2011 IFIP International Federation for Information Processing

    Dinitro-o-cresol induces apoptosis-like cell death but not alternative oxidase expression in soybean cells

    No full text
    In plants, programmed cell death is thought to be activated during differentiation and in response to biotic and abiotic stresses. Although its mechanisms are far less clear, several morphological and biochemical features have been described in different experimental systems, including DNA laddering and cytosolic protease activation. Moreover, plant mitochondria have an alternative terminal oxidase (AOX), which is thought to be involved in protection against increased reactive oxygen species production, perhaps representing a mechanism to prevent programmed cell death. In this study, we analysed cell death induced by the herbicide dinitro-o-cresol (DNOC) in soybean (Glycine max) suspension cell cultures and evaluated biochemical and molecular events associated with programmed cell death. AOX capacity and expression were also determined. DNOC-treated cells showed fragmented nuclear DNA as assessed by an in situ assay that detects 3'-OH ends. In addition, specific colorimetric assays and immunoblot analysis revealed activation of caspase-3-like proteins and release of cytochrome c from mitochondria, respectively, confirming the apoptatic-like phenotype. Surprisingly, AOX capacity and protein levels decreased in DNOC-treated cells, suggesting no association between cell death and AOX under these experimental conditions. In conclusion, the results show that DNOC induces programmed cell death in soybean cells, suggesting that plants and animals might share similar pathways. Further, the role of AOX in cell death has not been confirmed, and may depend on the nature and intensity of stress conditions. (c) 2006 Elsevier GmbH. All rights reserved
    corecore