369 research outputs found

    A novel DC current transformer using magneto-resistance sensors for FAIR

    Get PDF

    Streak camera as a new diagnostic tool for SIS18 ion beams

    Get PDF

    Dynamical and stationary critical behavior of the Ising ferromagnet in a thermal gradient

    Full text link
    In this paper we present and discuss results of Monte Carlo numerical simulations of the two-dimensional Ising ferromagnet in contact with a heat bath that intrinsically has a thermal gradient. The extremes of the magnet are at temperatures T1<Tc<T2T_1<T_c<T_2, where TcT_c is the Onsager critical temperature. In this way one can observe a phase transition between an ordered phase (TTcTT_c) by means of a single simulation. By starting the simulations with fully disordered initial configurations with magnetization m≡0m\equiv 0 corresponding to T=∞T=\infty, which are then suddenly annealed to a preset thermal gradient, we study the short-time critical dynamic behavior of the system. Also, by setting a small initial magnetization m=m0m=m_0, we study the critical initial increase of the order parameter. Furthermore, by starting the simulations from fully ordered configurations, which correspond to the ground state at T=0 and are subsequently quenched to a preset gradient, we study the critical relaxation dynamics of the system. Additionally, we perform stationary measurements (t→∞t\rightarrow\infty) that are discussed in terms of the standard finite-size scaling theory. We conclude that our numerical simulation results of the Ising magnet in a thermal gradient, which are rationalized in terms of both dynamic and standard scaling arguments, are fully consistent with well established results obtained under equilibrium conditions

    Regulation of class switch recombination and somatic mutation by AID phosphorylation

    Get PDF
    Activation-induced cytidine deaminase (AID) is a mutator enzyme that initiates somatic mutation and class switch recombination in B lymphocytes by introducing uracil:guanine mismatches into DNA. Repair pathways process these mismatches to produce point mutations in the Ig variable region or double-stranded DNA breaks in the switch region DNA. However, AID can also produce off-target DNA damage, including mutations in oncogenes. Therefore, stringent regulation of AID is required for maintaining genomic stability during maturation of the antibody response. It has been proposed that AID phosphorylation at serine 38 (S38) regulates its activity, but this has not been tested in vivo. Using a combination of mass spectrometry and immunochemical approaches, we found that in addition to S38, AID is also phosphorylated at position threonine 140 (T140). Mutation of either S38 or T140 to alanine does not impact catalytic activity, but interferes with class switching and somatic hypermutation in vivo. This effect is particularly pronounced in haploinsufficient mice where AID levels are limited. Although S38 is equally important for both processes, T140 phosphorylation preferentially affects somatic mutation, suggesting that posttranslational modification might contribute to the choice between hypermutation and class switching

    Beam Test with the Cryogenic Current Comparator

    Get PDF

    Feasibility of study magnetic proximity effects in bilayer "superconductor/ferromagnet" using waveguide-enhanced Polarized Neutron Reflectometry

    Full text link
    A resonant enhancement of the neutron standing waves is proposed to use in order to increase the magnetic neutron scattering from a "superconductor/ferromagnet"(S/F) bilayer. The model calculations show that usage of this effect allows to increase the magnetic scattering intensity by factor of hundreds. Aspects related to the growth procedure (order of deposition, roughness of the layers etc) as well as experimental conditions (resolution, polarization of the neutron beam, background etc) are also discussed. Collected experimental data for the S/F heterostructure Cu(32nm)/V(40nm)/Fe(1nm)/MgO confirmed the presence of a resonant 60-fold amplification of the magnetic scattering.Comment: The manuscript of the article submitted to Crysstalography Reports. 23 pages, 5 figure

    Non-perturbative measurement of low-intensity charged particle beams

    Get PDF
    Non-perturbative measurements of low-intensity charged particle beams are particularly challenging to beam diagnostics due to the low amplitude of the induced electromagnetic fields. In the low-energy antiproton decelerator (AD) and the future extra low energy antiproton rings at CERN, an absolute measurement of the beam intensity is essential to monitor the operation efficiency. Superconducting quantum interference device (SQUID) based cryogenic current comparators (CCC) have been used for measuring slow charged beams in the nA range, showing a very good current resolution. But these were unable to measure fast bunched beams, due to the slew-rate limitation of SQUID devices and presented a strong susceptibility to external perturbations. Here, we present a CCC system developed for the AD machine, which was optimised in terms of its current resolution, system stability, ability to cope with short bunched beams, and immunity to mechanical vibrations. This paper presents the monitor design and the first results from measurements with a low energy antiproton beam obtained in the AD in 2015. These are the first CCC beam current measurements ever performed in a synchrotron machine with both coasting and short bunched beams. It is shown that the system is able to stably measure the AD beam throughout the entire cycle, with a current resolution of 30 nA30\,\mathrm{nA}

    Case report: a case of intractable Meniere's disease treated with autogenic training

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Psychological stress plays an important role in the onset and course of Meniere's disease. Surgical therapy and intratympanic gentamicin treatment are options for cases that are intractable to conventional medical therapy. Psychotherapy, however, including autogenic training (AT), which can be used for general relaxation, is not widely accepted. This paper describes the successful administration of AT in a subject suffering from intractable Meniere's disease.</p> <p>Case presentation</p> <p>A 51-year-old male patient has suffered from fluctuating right sensorineural hearing loss with vertigo since 1994. In May 2002, he was first admitted to our hospital due to a severe vertigo attack accompanied by right sensorineural hearing loss. Spontaneous nystagmus toward the right side was observed. Since April 2004, he has experienced vertigo spells with right-sided tinnitus a few times per month that are intractable to conventional medical therapy. After four months, tympanic tube insertion was preformed in the right tympanic membrane. Intratympanic injection of dexamethasone was ineffective. He refused Meniett therapy and intratympanic gentamicin injection. In addition to his vertigo spells, he suffered from insomnia, tinnitus, and anxiety. Tranquilizers such as benzodiazepines and antidepressants such as serotonin selective re-uptake inhibitors (SSRIs) failed to stop the vertigo and only slightly improved his insomnia. In December 2006, the patient began psychological counseling with a psychotherapist. After brief psychological counseling along with cognitive behavior therapy (CBT), he began AT. He diligently and regularly continued his AT training in his home according to a written timetable. His insomnia, tinnitus, and vertigo spells disappeared within a few weeks after only four psychotherapy sessions. In order to master the six standard formulas of AT, he underwent two more sessions. Thereafter, he underwent follow-up for 9 months with no additional treatment. He is now free from drugs, including tranquilizers, and has continued AT. No additional treatment was performed. When we examined him <b>six </b>and nine months later for follow-up, he was free of vertigo and insomnia.</p> <p>Conclusion</p> <p>AT together with CBT can be a viable and palatable treatment option for Meniere's disease patients who are not responsive to other therapies.</p

    Optimality of mutation and selection in germinal centers

    Get PDF
    The population dynamics theory of B cells in a typical germinal center could play an important role in revealing how affinity maturation is achieved. However, the existing models encountered some conflicts with experiments. To resolve these conflicts, we present a coarse-grained model to calculate the B cell population development in affinity maturation, which allows a comprehensive analysis of its parameter space to look for optimal values of mutation rate, selection strength, and initial antibody-antigen binding level that maximize the affinity improvement. With these optimized parameters, the model is compatible with the experimental observations such as the ~100-fold affinity improvements, the number of mutations, the hypermutation rate, and the "all or none" phenomenon. Moreover, we study the reasons behind the optimal parameters. The optimal mutation rate, in agreement with the hypermutation rate in vivo, results from a tradeoff between accumulating enough beneficial mutations and avoiding too many deleterious or lethal mutations. The optimal selection strength evolves as a balance between the need for affinity improvement and the requirement to pass the population bottleneck. These findings point to the conclusion that germinal centers have been optimized by evolution to generate strong affinity antibodies effectively and rapidly. In addition, we study the enhancement of affinity improvement due to B cell migration between germinal centers. These results could enhance our understandings to the functions of germinal centers.Comment: 5 figures in main text, and 4 figures in Supplementary Informatio
    • …
    corecore