42 research outputs found

    Estimating the effect of a scanner upgrade on measures of grey matter structure for longitudinal designs

    Get PDF
    Longitudinal imaging studies are crucial for advancing the understanding of brain development over the lifespan. Thus, more and more studies acquire imaging data at multiple time points or with long follow-up intervals. In these studies changes to magnetic resonance imaging (MRI) scanners often become inevitable which may decrease the reliability of the MRI assessments and introduce biases. We therefore investigated the difference between MRI scanners with subsequent versions (3 Tesla Siemens Verio vs. Skyra) on the cortical and subcortical measures of grey matter in 116 healthy, young adults using the well-established longitudinal FreeSurfer stream for T1-weighted brain images. We found excellent between-scanner reliability for cortical and subcortical measures of grey matter structure (intra-class correlation coefficient > 0.8). Yet, paired t-tests revealed statistically significant differences in at least 67% of the regions, with percent differences around 2 to 4%, depending on the outcome measure. Offline correction for gradient distortions only slightly reduced these biases. Further, T1-imaging based quality measures reflecting gray-white matter contrast systematically differed between scanners. We conclude that scanner upgrades during a longitudinal study introduce bias in measures of cortical and subcortical grey matter structure. Therefore, before upgrading a MRI scanner during an ongoing study, researchers should prepare to implement an appropriate correction method for these effects

    First amyloid β1-42 certified reference material for re-calibrating commercial immunoassays

    Get PDF
    INTRODUCTION: Reference materials based on human cerebrospinal fluid were certified for the mass concentration of amyloid beta (Aβ)1-42 (Aβ42 ). They are intended to be used to calibrate diagnostic assays for Aβ42 . METHODS: The three certified reference materials (CRMs), ERM-DA480/IFCC, ERM-DA481/IFCC and ERM-DA482/IFCC, were prepared at three concentration levels and characterized using isotope dilution mass spectrometry methods. Roche, EUROIMMUN, and Fujirebio used the three CRMs to re-calibrate their immunoassays. RESULTS: The certified Aβ42 mass concentrations in ERM-DA480/IFCC, ERM-DA481/IFCC, and ERM-DA482/IFCC are 0.45, 0.72, and 1.22 μg/L, respectively, with expanded uncertainties (k = 2) of 0.07, 0.11, and 0.18 μg/L, respectively. Before re-calibration, a good correlation (Pearson's r > 0.97), yet large biases, were observed between results from different commercial assays. After re-calibration the between-assay bias was reduced to < 5%. DISCUSSION: The Aβ42 CRMs can ensure the equivalence of results between methods and across platforms for the measurement of Aβ42

    Culturing Aerobic and Anaerobic Bacteria and Mammalian Cells with a Microfluidic Differential Oxygenator

    Get PDF
    In this manuscript, we report on the culture of anaerobic and aerobic species within a disposable multilayer polydimethylsiloxane (PDMS) microfluidic device with an integrated differential oxygenator. A gas-filled microchannel network functioning as an oxygen−nitrogen mixer generates differential oxygen concentration. By controlling the relative flow rate of the oxygen and nitrogen input gases, the dissolved oxygen (DO) concentration in proximal microchannels filled with culture media are precisely regulated by molecular diffusion. Sensors consisting of an oxygen-sensitive dye embedded in the fluid channels permit dynamic fluorescence-based monitoring of the DO concentration using low-cost light-emitting diodes. To demonstrate the general utility of the platform for both aerobic and anaerobic culture, three bacteria with differential oxygen requirements (E. coli, A. viscosus, and F. nucleatum), as well as a model mammalian cell line (murine embryonic fibroblast cells (3T3)), were cultured. Growth characteristics of the selected species were analyzed as a function of eight discrete DO concentrations, ranging from 0 ppm (anaerobic) to 42 ppm (fully saturated)

    INTERACTION OF IHRL AND IHL IN THE FIELD HUMAN RIGHTS PROMOTION: INTERNATIONAL STANDARDS AND NATIONAL DIMENSION

    Get PDF
    The urgency of the research is conditioned by the actual status of the governmental and legal reality of Ukraine which is in conditions of the armed conflict seventh year in a row resulting in the need to ensure both state sovereignty and guarantee and protection of human rights. In this regard, the article is aimed at studying the interaction of international human rights law and international humanitarian law, as well as their implementation in the legislation of Ukraine in conditions of an armed conflict. Scientific methods of research of the declared problems are the system method by means of which the international human rights law and the international humanitarian law are considered as two systems of more difficult complex – the international law. Using the structural-functional method, the structure and mechanisms of functional interaction of these systems on the legal regulation in the field of human rights in specific conditions are studied. The article analyzes the legal basis of international human rights law and international humanitarian law, as well as their possible simultaneous application in the context of the armed conflict in eastern Ukraine. Emphasis is placed on the need to ensure compliance with the principles of international humanitarian law and to bring to justice those guilty of violating the rules of the IHRL and IHL. The research results can be used in the educational process and further research

    Mesospheric H2O Concentrations Retrieved from SABER/TIMED Measurements

    No full text
    The SABER instrument on board the TIMED Satellite is a limb scanning infrared radiometer designed to measure temperature and minor constituent vertical profiles and energetics parameters in the mesosphere and lower thermosphere (MLT). The H2O concentrations are retrieved from 6.3 micron band radiances. The populations of H2O(v2) vibrational levels are in non-Local Thermodynamic Equilibrium (non-LTE) above approximately 55 km altitude and the interpretation of 6.3 micron radiance requires utilizing non-LTE H2O model that includes various energy exchange processes in the system of H2O vibrational levels coupled with O2, N2, and CO2 vibrational levels. We incorporated these processes including kinetics of O2/O3 photolysis products to our research non-LTE H2O model and applied it for the development and optimization of SABER operational model. The latter has been validated using simultaneous SCISAT1/ACE occultation measurements. This helped us to estimate CO2(020)-O2(X,v=I), O2(X,v=I)- H2O(010), and O2(X,v=1) O rates at mesopause temperatures that is critical for an adequate interpretation of non-LTE H2O radiances in the MLT. The first distributions of seasonal and meridional H2O concentrations retrieved from SABER 6.3 micron radiances applying an updated non-LTE H2O model are demonstrated and discussed

    Method comparison study of the Elecsys® β-Amyloid (1–42) CSF assay versus comparator assays and LC-MS/MS

    No full text
    Background: Alzheimer's disease (AD) biomarkers, such as cerebrospinal fluid (CSF) amyloid-β (1–42; Aβ42), can provide high diagnostic accuracy. Several immunoassays are available for Aβ42 quantitation, but standardisation across assays remains an issue. We compared the Elecsys® β-Amyloid (1–42) CSF assay with three assays and two liquid chromatography tandem mass spectrometry (LC-MS/MS) methods. Methods: Three method comparison studies evaluated the correlation between the Elecsys® β-Amyloid (1–42) CSF assay versus: INNOTEST® β-AMYLOID(1–42) (860 samples) and the Roche Diagnostics-developed LC-MS/MS method (250 samples); INNO-BIA AlzBio3 and the University of Pennsylvania (UPenn)-developed LC-MS/MS method (250 samples); and ADx-EUROIMMUN Beta-Amyloid (1–42) enzyme-linked immunosorbent assay (ELISA) (49 samples). Results: High correlation was demonstrated between Elecsys® β-Amyloid (1–42) CSF and comparator assays: INNOTEST® β-AMYLOID(1–42) (Spearman's ρ, 0.954); INNO-BIA AlzBio3 (Spearman's ρ, 0.864); ADx-EUROIMMUN Beta-Amyloid (1–42) ELISA (Pearson's r, 0.925). Elecsys® assay and LC-MS/MS measurements were highly correlated: Pearson's r, 0.949 (Roche Diagnostics-developed method) and 0.943 (UPenn-developed method). Conclusion: Findings from this multicentre evaluation further support use of the Elecsys® β-Amyloid (1–42) CSF assay to aid AD diagnosis. CSF-based certified reference materials should improve agreement across assays and mass spectrometry-based methods, which is essential to establish a global uniform CSF Aβ42 cut-off to detect amyloid pathology
    corecore