603 research outputs found

    Large-scale electronic structure theory for simulating nanostructure process

    Full text link
    Fundamental theories and practical methods for large-scale electronic structure calculations are given, in which the computational cost is proportional to the system size. Accuracy controlling methods for microscopic freedoms are focused on two practical solver methods, Krylov-subspace method and generalized-Wannier-state method. A general theory called the 'multi-solver' scheme is also formulated, as a hybrid between different solver methods. Practical examples are carried out in several insulating and metallic systems with 10^3-10^5 atoms. All the theories provide general guiding principles of constructing an optimal calculation for simulating nanostructure processes, since a nanostructured system consists of several competitive regions, such as bulk and surface regions, and the simulation is designed to reproduce the competition with an optimal computational cost.Comment: 19 pages, 6 figures. To appear in J. Phys. Cond. Matt. A preprint PDF file in better graphics is available at http://fujimac.t.u-tokyo.ac.jp/lses/index_e.htm

    Особливості розвитку освітнього потенціалу України в умовах глобалізації

    Get PDF
    BACKGROUND: Recommended screening to identify children at risk for diabetes and its precursors impaired glucose tolerance (IGT) and insulin resistance (IR) is fasted plasma glucose (FPG). This study evaluates the added value of fasted plasma insulin (FPI). METHODS: This study analyzed routinely collected data of an oral glucose tolerance test (OGTT) of 311 obese children (age 10.8 ± 3.2 years). Diabetes and IGT were defined according to the American Diabetes Association criteria, IR as homeostasis model assessment (HOMA)-IR ≥3.4. RESULTS: Cases diagnosed with an OGTT if FPG ≥5.6 mmol/L, compared with an OGTT performed if FPG ≥5.6 mmol/L or HOMA-IR ≥3.4, were, respectively, 4 (80%) versus 5 (100%) with diabetes, 7 (28%) versus 16 (64%) with IGT, and 0 (0%) versus 93 (100%) with IR. CONCLUSIONS: Screening with FPG and FPI has equal burden compared with screening with FPG alone, identifies all patients with diabetes, and identifies more patients with precursors of diabetes

    Application of stochastic programming to reduce uncertainties in quality-based supply planning of slaughterhouses

    Get PDF
    To match products of different quality with end market preferences under supply uncertainty, it is crucial to integrate product quality information in logistics decision making. We present a case of this integration in a meat processing company that faces uncertainty in delivered livestock quality. We develop a stochastic programming model that exploits historical product quality delivery data to produce slaughterhouse allocation plans with reduced levels of uncertainty in received livestock quality. The allocation plans generated by this model fulfil demand for multiple quality features at separate slaughterhouses under prescribed service levels while minimizing transportation costs. We test the model on real world problem instances generated from a data set provided by an industrial partner. Results show that historical farmer delivery data can be used to reduce uncertainty in quality of animals to be delivered to slaughterhouses

    Psychostimulants: Influence on Body Mass Index and Height in a Pediatric Population with Attention-Deficit/Hyperactivity Disorder?

    Get PDF
    OBJECTIVES: Attention-deficit/hyperactivity disorder (ADHD) is often treated with psychostimulants. Psychostimulants' adverse effects on body mass index standard deviation score (BMI-sds) and height in children/adolescents with ADHD have been reported. However, literature is inconsistent, and it is unclear whether the observed effects are dosage- and/or BMI-dependent. Therefore, the aim of this retrospective observational study is to evaluate the influence of psychostimulants on BMI-sds and height-sds in a pediatric cohort with ADHD from an outpatient clinic, and to study the correlation between psychostimulant dosage and BMI-sds and height-sds change. METHOD: Participants ≤18 years of age diagnosed with ADHD who started with psychostimulants (methylphenidate) were studied. Changes in BMI-sds and height-sds over an 18-month treatment period were assessed in subgroups according to baseline BMI-sds, gender, and age. Furthermore, correlations between BMI-sds, height-sds, and psychostimulant dose were studied. RESULTS: In total, 298 participants [median age 9.8 years, height-sds 0.0, BMI-sds 0.5, psychostimulant dosage 0.5 (0.2-1.4) mg/kg/day] were analyzed, with an underweight, overweight, and obesity prevalence of 5%, 21%, and 7%, respectively. After 18 months of treatment a significant decline in BMI-sds (-0.4) and height-sds (-0.2) was observed. These effects were consistent in all subgroups except for no change in BMI-sds in the underweight subgroup and no change in height-sds in the overweight subgroup. Medication dosage was weakly correlated with change in BMI-sds [r = -0.3 (-0.9 to +0.5); p < 0.01] and height-sds [r = -0.2 (-0.4 to -0.1); p = 0.01]. CONCLUSION: After 18 months of psychostimulant treatment, a significant decline in BMI-sds and height-sds was observed. However, the correlation with psychostimulant dosage was weak, and the decline was not observed in all subgroups. Therefore, further studies on the etiology of BMI-change are warranted, particularly with regard to the ADHD symptoms

    Appropriate medication use in Dutch terminal care:study protocol of a multicentre stepped-wedge cluster randomized controlled trial (the AMUSE study)

    Get PDF
    Background: Polypharmacy is common among patients with a limited life expectancy, even shortly before death. This is partly inevitable, because these patients often have multiple symptoms which need to be alleviated. However, the use of potentially inappropriate medications (PIMs) in these patients is also common. Although patients and relatives are often willing to deprescribe medication, physicians are sometimes reluctant due to the lack of evidence on appropriate medication management for patients in the last phase of life. The aim of the AMUSE study is to investigate whether the use of CDSS-OPTIMED, a software program that gives weekly personalized medication recommendations to attending physicians of patients with a limited life expectancy, improves patients’ quality of life. Methods: A multicentre stepped-wedge cluster randomized controlled trial will be conducted among patients with a life expectancy of three months or less. The stepped-wedge cluster design, where the clusters are the different study sites, involves sequential crossover of clusters from control to intervention until all clusters are exposed. In total, seven sites (4 hospitals, 2 general practices and 1 hospice from the Netherlands) will participate in this study. During the control period, patients will receive ‘care as usual’. During the intervention period, CDSS-OPTIMED will be activated. CDSS-OPTIMED is a validated software program that analyses the use of medication based on a specific set of clinical rules for patients with a limited life expectancy. The software program will provide the attending physicians with weekly personalized medication recommendations. The primary outcome of this study is patients’ quality of life two weeks after baseline assessment as measured by the EORTC QLQ-C15-PAL questionnaire, quality of life question.Discussion: This will be the first study investigating the effect of weekly personalized medication recommendations to attending physicians on the quality of life of patients with a limited life expectancy. We hypothesize that the CDSS-OPTIMED intervention could lead to improved quality of life in patients with a life expectancy of three months or less. Trial registration: This trial is registered at ClinicalTrials.gov (NCT05351281, Registration Date: April 11, 2022).</p

    Broadband coated lens solutions for FIR-mm-wave instruments

    Get PDF
    This paper presents recent results of ongoing European Space Agency funded program of work aimed at developing large dielectric lenses suitable for future satellite missions, with a particular focus on requirements for CMB polarimetry. Two lens solutions are being investigated: (i) polymer lenses with broadband multi-layer antireflection coatings; (ii) silicon lenses with surface-structured anti-reflection coating represented by directly machined pyramidal features. For each solution, base materials with and without coatings have been optically characterized over a range of temperatures down to ∼10 K. Full lens solutions are under manufacture and will be tested in a bespoke large cryo-optical facility

    On Convergence of the Inexact Rayleigh Quotient Iteration with the Lanczos Method Used for Solving Linear Systems

    Full text link
    For the Hermitian inexact Rayleigh quotient iteration (RQI), the author has established new local general convergence results, independent of iterative solvers for inner linear systems. The theory shows that the method locally converges quadratically under a new condition, called the uniform positiveness condition. In this paper we first consider the local convergence of the inexact RQI with the unpreconditioned Lanczos method for the linear systems. Some attractive properties are derived for the residuals, whose norms are ξk+1\xi_{k+1}'s, of the linear systems obtained by the Lanczos method. Based on them and the new general convergence results, we make a refined analysis and establish new local convergence results. It is proved that the inexact RQI with Lanczos converges quadratically provided that ξk+1ξ\xi_{k+1}\leq\xi with a constant ξ1\xi\geq 1. The method is guaranteed to converge linearly provided that ξk+1\xi_{k+1} is bounded by a small multiple of the reciprocal of the residual norm rk\|r_k\| of the current approximate eigenpair. The results are fundamentally different from the existing convergence results that always require ξk+1<1\xi_{k+1}<1, and they have a strong impact on effective implementations of the method. We extend the new theory to the inexact RQI with a tuned preconditioned Lanczos for the linear systems. Based on the new theory, we can design practical criteria to control ξk+1\xi_{k+1} to achieve quadratic convergence and implement the method more effectively than ever before. Numerical experiments confirm our theory.Comment: 20 pages, 8 figures. arXiv admin note: text overlap with arXiv:0906.223

    A new critical curve for the Lane-Emden system

    Full text link
    We study stable positive radially symmetric solutions for the Lane-Emden system Δu=vp-\Delta u=v^p in RN\R^N, Δv=uq-\Delta v=u^q in RN\R^N, where p,q1p,q\geq 1. We obtain a new critical curve that optimally describes the existence of such solutions.Comment: 13 pages, 1 figur

    Light hadron spectroscopy in two-flavor QCD with small sea quark masses

    Get PDF
    We extend the study of the light hadron spectrum and the quark mass in two-flavor QCD to smaller sea quark mass, corresponding to mPS/mV=0.60m_{PS}/m_{V}=0.60--0.35. Numerical simulations are carried out using the RG-improved gauge action and the meanfield-improved clover quark action at β=1.8\beta=1.8 (a=0.2a = 0.2 fm from ρ\rho meson mass). We observe that the light hadron spectrum for small sea quark mass does not follow the expectation from chiral extrapolations with quadratic functions made from the region of mPS/mV=0.80m_{PS}/m_{V}=0.80--0.55. Whereas fits with either polynomial or continuum chiral perturbation theory (ChPT) fails, the Wilson ChPT (WChPT) that includes a2a^2 effects associated with explicit chiral symmetry breaking successfully fits the whole data: In particular, WChPT correctly predicts the light quark mass spectrum from simulations for medium heavy quark mass, such as m_{PS}/m_V \simgt 0.5. Reanalyzing the previous data %at mPS/mV=0.80m_{PS}/m_{V}=0.80--0.55 with the use of WChPT, we find the mean up and down quark mass being smaller than the previous result from quadratic chiral extrapolation by approximately 10%, mudMSˉ(μ=2GeV)=3.11(17)m_{ud}^{\bar{\rm MS}}(\mu=2 {GeV}) = 3.11(17) [MeV] in the continuum limit.Comment: 33 page

    Optimization of cw sodium laser guide star efficiency

    Full text link
    Context: Sodium laser guide stars (LGS) are about to enter a new range of laser powers. Previous theoretical and numerical methods are inadequate for accurate computations of the return flux and hence for the design of the next-generation LGS systems. Aims: We numerically optimize the cw (continuous wave) laser format, in particular the light polarization and spectrum. Methods: Using Bloch equations, we simulate the mesospheric sodium atoms, including Doppler broadening, saturation, collisional relaxation, Larmor precession, and recoil, taking into account all 24 sodium hyperfine states and on the order of 100 velocity groups. Results: LGS return flux is limited by "three evils": Larmor precession due to the geomagnetic field, atomic recoil due to radiation pressure, and transition saturation. We study their impacts and show that the return flux can be boosted by repumping (simultaneous excitation of the sodium D2a and D2b lines with 10-20% of the laser power in the latter). Conclusions: We strongly recommend the use of circularly polarized lasers and repumping. As a rule of thumb, the bandwidth of laser radiation in MHz (at each line) should approximately equal the launched laser power in Watts divided by six, assuming a diffraction-limited spot size.Comment: 15 pages, 12 figures, to be published in Astronomy & Astrophysics, AA/2009/1310
    corecore