64 research outputs found

    Unworking Milton: Steps to a Georgics of the Mind

    Full text link
    Traditionally read as a poem about laboring subjects who gain power through abstract and abstracting forms of bodily discipline, John Milton’s Paradise Lost (1667, 1674) more compellingly foregrounds the erotics of the Garden as a space where humans and nonhumans intra-act materially and sexually. Following Christopher Hill, who long ago pointed to not one but two revolutions in the history of seventeenth-century English radicalism—the first, ‘the one which succeeded[,] . . . the protestant ethic’; and the second, ‘the revolution which never happened,’ which sought ‘communal property, a far wider democracy[,] and rejected the protestant ethic’—I show how Milton’s Paradise Lost gives substance to ‘the revolution which never happened’ by imagining a commons, indeed a communism, in which human beings are not at the center of things, but rather constitute one part of the greater ecology of mind within Milton’s poem. In the space created by this ecological reimagining, plants assume a new agency. I call this reimagining ‘ecology to come.

    Parametric design optimisation of proximal humerus plates based on finite element method

    Get PDF
    Optimal treatment of proximal humerus fractures remains controversial. Locking plates offer theoretical advantages but are associated with complications in the clinic. This study aimed to perform parametric design optimisation of proximal humerus plates to enhance their mechanical performance. A finite element (FE) model was developed that simulated a two-part proximal humerus fracture that had been treated with a Spatial Subchondral Support (S3) plate and subjected to varus bending. The FE model was validated against in vitro biomechanical test results. The predicted load required to apply 5 mm cantilever varus bending was only 0.728% lower. The FE model was then used to conduct a parametric optimisation study to determine the orientations of inferomedial plate screws that would yield minimum fracture gap change (i.e. optimal stability). The feasible design space was automatically identified by imposing clinically relevant constraints, and the creation process of each FE model for the design optimisation was automated. Consequently, 538 FE models were generated, from which the obtained optimal model had 4.686% lower fracture gap change (0.156 mm) than that of the manufacturer’s standard plate. Whereas its screws were oriented towards the inferomedial region and within the range of neck-shaft angle of a healthy subject. The methodology presented in this study promises future applications in patient-specific design optimisation of implants for other regions of the human body

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    Prehospital transdermal glyceryl trinitrate in patients with ultra-acute presumed stroke (RIGHT-2): an ambulance-based, randomised, sham-controlled, blinded, phase 3 trial

    Get PDF
    Background High blood pressure is common in acute stroke and is a predictor of poor outcome; however, large trials of lowering blood pressure have given variable results, and the management of high blood pressure in ultra-acute stroke remains unclear. We investigated whether transdermal glyceryl trinitrate (GTN; also known as nitroglycerin), a nitric oxide donor, might improve outcome when administered very early after stroke onset. Methods We did a multicentre, paramedic-delivered, ambulance-based, prospective, randomised, sham-controlled, blinded-endpoint, phase 3 trial in adults with presumed stroke within 4 h of onset, face-arm-speech-time score of 2 or 3, and systolic blood pressure 120 mm Hg or higher. Participants were randomly assigned (1:1) to receive transdermal GTN (5 mg once daily for 4 days; the GTN group) or a similar sham dressing (the sham group) in UK based ambulances by paramedics, with treatment continued in hospital. Paramedics were unmasked to treatment, whereas participants were masked. The primary outcome was the 7-level modified Rankin Scale (mRS; a measure of functional outcome) at 90 days, assessed by central telephone follow-up with masking to treatment. Analysis was hierarchical, first in participants with a confirmed stroke or transient ischaemic attack (cohort 1), and then in all participants who were randomly assigned (intention to treat, cohort 2) according to the statistical analysis plan. This trial is registered with ISRCTN, number ISRCTN26986053. Findings Between Oct 22, 2015, and May 23, 2018, 516 paramedics from eight UK ambulance services recruited 1149 participants (n=568 in the GTN group, n=581 in the sham group). The median time to randomisation was 71 min (IQR 45–116). 597 (52%) patients had ischaemic stroke, 145 (13%) had intracerebral haemorrhage, 109 (9%) had transient ischaemic attack, and 297 (26%) had a non-stroke mimic at the final diagnosis of the index event. In the GTN group, participants’ systolic blood pressure was lowered by 5·8 mm Hg compared with the sham group (p<0·0001), and diastolic blood pressure was lowered by 2·6 mm Hg (p=0·0026) at hospital admission. We found no difference in mRS between the groups in participants with a final diagnosis of stroke or transient ischaemic stroke (cohort 1): 3 (IQR 2–5; n=420) in the GTN group versus 3 (2–5; n=408) in the sham group, adjusted common odds ratio for poor outcome 1·25 (95% CI 0·97–1·60; p=0·083); we also found no difference in mRS between all patients (cohort 2: 3 [2–5]; n=544, in the GTN group vs 3 [2–5]; n=558, in the sham group; 1·04 [0·84–1·29]; p=0·69). We found no difference in secondary outcomes, death (treatment-related deaths: 36 in the GTN group vs 23 in the sham group [p=0·091]), or serious adverse events (188 in the GTN group vs 170 in the sham group [p=0·16]) between treatment groups. Interpretation Prehospital treatment with transdermal GTN does not seem to improve functional outcome in patients with presumed stroke. It is feasible for UK paramedics to obtain consent and treat patients with stroke in the ultraacute prehospital setting. Funding British Heart Foundation

    Cortical Bone Fracture and Orthopaedic Fixation Devices: An Experimental and Computational Investigation

    Get PDF
    An experimental and computational investigation of cortical bone failure mechanisms has been conducted in this thesis. Firstly, a computational comparison of four methods of proximal humeral fracture fixation was conducted. Peak stresses were predicted at the screw cortical bone interface. Carbon fibre reinforced PEEK (CFPEEK) devices were proposed as an alternative to existing metallic devices. It was demonstrated that CFPEEK devices lowered stresses at the screw cortical bone interface, thus lowering the risk of screw pullout/pushout. Next, a novel experimental test rig was developed, so that crack patterns during screw pullout could be identified in real time as the screw was removed from the cortical bone. Pullout tests were conducted with; (i) osteons aligned parallel to the central axis of the screw (longitudinal pullout) and (ii) osteons aligned perpendicular to the central axis of the screw (transverse pullout). This experimental study uncovered for the first time, the relationship between the microstructural alignment of cortical bone, the pullout strength and the crack patterns. Two methods of computational modelling were subsequently developed to capture the relationship uncovered during the experimental screw pullout study. The first method of element deletion required the use of a phenomenological biphasic multi-layered composite model. This model accurately predicted both the pullout force and crack patterns for longitudinal and transverse pullout. The element deletion method was limited to 2D simulations therefore an alternate method with a lower computational expense was investigated. The second method involved the development of anisotropic damage initiation criteria in conjunction with the extended finite element method (XFEM). In this case, it was not necessary to explicitly represent the geometric microstructure of bone thus lowering the computational demand. This model accurately predicted the relationship between the osteon alignment, failure forces and crack propagation orientation for mode I, mode II and mixed mode loading. Application, of this fully calibrated anisotropic damage XFEM predictive framework, to screw pullout and 3D simulations of proximal humeral fracture repair, highlighted the potential future application of this method in the field of orthopaedic device design

    Continuity in the Presidency: Gaps and Solution—Building on the Legacy of the Twenty-Fifth Amendment, Part 1

    No full text
    Opening Remarks: Julia M. MacAllister, Editor-in-Chief, Fordham Law Review; John D. Feerick, Norris Professor of Law, Fordham Law School; Matthew Diller, Dean and Paul Fuller Professor of Law, Fordham Law School. Fordham University School of Law, September 27, 2017. Co-sponsored by the Feerick Center for Social Justice, Fordham Law Review, Standing Committee on Election Law of the American Bar Association, and the Bipartisan Policy Center.https://ir.lawnet.fordham.edu/twentyfifth_amendment_photos/1008/thumbnail.jp

    Electrically-Heated Ceramic Composite Tooling for Out-of-Autoclave Manufacturing of Large Composite Structures

    Get PDF
    This paper describes the development of electrically-heated ceramic composite tooling, aimed primarily at the manufacture of large composites structures, for aerospace or for wind energy. The tooling is designed to operate at temperatures up to 300°C, but has the potential to be used at temperatures up to 500°C and above. The ceramic material is an aluminosilicate material, reinforced by continuous fibres and thermoplastic polymer, and laid up with embedded electrical heaters. The ceramic and reinforcing layers are laid up by hand at room temperature, on a standard pattern and cured initially to 60°C, followed by a free-standing post-cure, in stages to approximately 400°C. Special-purpose gel-coats and surface sealing layers are employed to ensure a smooth, vacuum-tight surface. The tooling is lightweight, strong and durable, and has a low coefficient of thermal expansion. Electrical heating power per square metre of tool surface is typically between 5.0 and 15.0 KW/sq.m. Examples are given of the use of the tooling to manufacture 12.6 metre long glass-fibre/epoxy and glass-fibre/PBT wind turbine blades (250KW machine). Aerospace carbon-fibre epoxy prepregs are also processed on the tooling successfully. In all cases, the materials need to be processed between 180°C and slightly above 200°C. The integrally-heated ceramic composite tooling provides a more cost-effective tooling system for processing thermoplastic or thermoset composites at these temperatures than standard metal tooling
    • …
    corecore