74 research outputs found
Perspectives for Monte Carlo simulations on the CNN Universal Machine
Possibilities for performing stochastic simulations on the analog and fully
parallelized Cellular Neural Network Universal Machine (CNN-UM) are
investigated. By using a chaotic cellular automaton perturbed with the natural
noise of the CNN-UM chip, a realistic binary random number generator is built.
As a specific example for Monte Carlo type simulations, we use this random
number generator and a CNN template to study the classical site-percolation
problem on the ACE16K chip. The study reveals that the analog and parallel
architecture of the CNN-UM is very appropriate for stochastic simulations on
lattice models. The natural trend for increasing the number of cells and local
memories on the CNN-UM chip will definitely favor in the near future the CNN-UM
architecture for such problems.Comment: 14 pages, 6 figure
Centrality scaling in large networks
Betweenness centrality lies at the core of both transport and structural
vulnerability properties of complex networks, however, it is computationally
costly, and its measurement for networks with millions of nodes is near
impossible. By introducing a multiscale decomposition of shortest paths, we
show that the contributions to betweenness coming from geodesics not longer
than L obey a characteristic scaling vs L, which can be used to predict the
distribution of the full centralities. The method is also illustrated on a
real-world social network of 5.5*10^6 nodes and 2.7*10^7 links
Complexity of the International Agro-Food Trade Network and Its Impact on Food Safety
With the world’s population now in excess of 7 billion, it is vital to ensure the chemical and microbiological safety of our food, while maintaining the sustainability of its production, distribution and trade. Using UN databases, here we show that the international agro-food trade network (IFTN), with nodes and edges representing countries and import-export fluxes, respectively, has evolved into a highly heterogeneous, complex supply-chain network. Seven countries form the core of the IFTN, with high values of betweenness centrality and each trading with over 77% of all the countries in the world. Graph theoretical analysis and a dynamic food flux model show that the IFTN provides a vehicle suitable for the fast distribution of potential contaminants but unsuitable for tracing their origin. In particular, we show that high values of node betweenness and vulnerability correlate well with recorded large food poisoning outbreaks
Collective behavior of "electronic fireflies"
A simple system composed of electronic oscillators capable of emitting and
detecting light-pulses is studied. The oscillators are biologically inspired,
their behavior is designed for keeping a desired light intensity, W, in the
system. From another perspective, the system behaves like modified integrate
and fire type neurons that are pulse-coupled with inhibitory type interactions:
the firing of one oscillator delays the firing of all the others. Experimental
and computational studies reveal that although no driving force favoring
synchronization is considered, for a given interval of W phase-locking appears.
This weak synchronization is sometimes accompanied by complex dynamical
patterns in the flashing sequence of the oscillators.Comment: 4 pages, 4 figures include
Optimization hardness as transient chaos in an analog approach to constraint satisfaction
Boolean satisfiability [1] (k-SAT) is one of the most studied optimization
problems, as an efficient (that is, polynomial-time) solution to k-SAT (for
) implies efficient solutions to a large number of hard optimization
problems [2,3]. Here we propose a mapping of k-SAT into a deterministic
continuous-time dynamical system with a unique correspondence between its
attractors and the k-SAT solution clusters. We show that beyond a constraint
density threshold, the analog trajectories become transiently chaotic [4-7],
and the boundaries between the basins of attraction [8] of the solution
clusters become fractal [7-9], signaling the appearance of optimization
hardness [10]. Analytical arguments and simulations indicate that the system
always finds solutions for satisfiable formulae even in the frozen regimes of
random 3-SAT [11] and of locked occupation problems [12] (considered among the
hardest algorithmic benchmarks); a property partly due to the system's
hyperbolic [4,13] character. The system finds solutions in polynomial
continuous-time, however, at the expense of exponential fluctuations in its
energy function.Comment: 27 pages, 14 figure
Livestock trade networks for guiding animal health surveillance
BACKGROUND: Trade in live animals can contribute to the introduction of exotic diseases, the maintenance and spread endemic diseases. Annually millions of animals are moved across Europe for the purposes of breeding, fattening and slaughter. Data on the number of animals moved were obtained from the Directorate General Sanco (DG Sanco) for 2011. These were converted to livestock units to enable direct comparison across species and their movements were mapped, used to calculate the indegrees and outdegrees of 27 European countries and the density and transitivity of movements within Europe. This provided the opportunity to discuss surveillance of European livestock movement taking into account stopping points en-route. RESULTS: High density and transitivity of movement for registered equines, breeding and fattening cattle, breeding poultry and pigs for breeding, fattening and slaughter indicates that hazards have the potential to spread quickly within these populations. This is of concern to highly connected countries particularly those where imported animals constitute a large proportion of their national livestock populations, and have a high indegree. The transport of poultry (older than 72 hours) and unweaned animals would require more rest breaks than the movement of weaned animals, which may provide more opportunities for disease transmission. Transitivity is greatest for animals transported for breeding purposes with cattle, pigs and poultry having values of over 50%. CONCLUSIONS: This paper demonstrated that some species (pigs and poultry) are traded much more frequently and at a larger scale than species such as goats. Some countries are more vulnerable than others due to importing animals from many countries, having imported animals requiring rest-breaks and importing large proportions of their national herd or flock. Such knowledge about the vulnerability of different livestock systems related to trade movements can be used to inform the design of animal health surveillance systems to facilitate the trade in animals between European member states. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1186/s12917-015-0354-4) contains supplementary material, which is available to authorized users
Modeling Conformational Ensembles of Slow Functional Motions in Pin1-WW
Protein-protein interactions are often mediated by flexible loops that experience conformational dynamics on the microsecond to millisecond time scales. NMR relaxation studies can map these dynamics. However, defining the network of inter-converting conformers that underlie the relaxation data remains generally challenging. Here, we combine NMR relaxation experiments with simulation to visualize networks of inter-converting conformers. We demonstrate our approach with the apo Pin1-WW domain, for which NMR has revealed conformational dynamics of a flexible loop in the millisecond range. We sample and cluster the free energy landscape using Markov State Models (MSM) with major and minor exchange states with high correlation with the NMR relaxation data and low NOE violations. These MSM are hierarchical ensembles of slowly interconverting, metastable macrostates and rapidly interconverting microstates. We found a low population state that consists primarily of holo-like conformations and is a “hub” visited by most pathways between macrostates. These results suggest that conformational equilibria between holo-like and alternative conformers pre-exist in the intrinsic dynamics of apo Pin1-WW. Analysis using MutInf, a mutual information method for quantifying correlated motions, reveals that WW dynamics not only play a role in substrate recognition, but also may help couple the substrate binding site on the WW domain to the one on the catalytic domain. Our work represents an important step towards building networks of inter-converting conformational states and is generally applicable
Whole Genome Sequencing demonstrates that Geographic Variation of Escherichia coli O157 Genotypes Dominates Host Association
Funding Information: The authors acknowledge the support of the Food Standards Agency, Scotland (FS102029) and the University of Aberdeen for funding sequencing of the Scottish E. coli O157 genomes, to Chris Low at the Scottish Agricultural College, Edinburgh for supplying a number of the Scottish sheep isolates, Iain Ogden for commenting on the manuscript and Patricia Jaros (Massey University) for preparing the New Zealand isolate DNA for sequencing.Peer reviewedPublisher PD
Weight Consistency Specifies Regularities of Macaque Cortical Networks
To what extent cortical pathways show significant weight differences and whether these differences are consistent across animals (thereby comprising robust connectivity profiles) is an important and unresolved neuroanatomical issue. Here we report a quantitative retrograde tracer analysis in the cynomolgus macaque monkey of the weight consistency of the afferents of cortical areas across brains via calculation of a weight index (fraction of labeled neurons, FLN). Injection in 8 cortical areas (3 occipital plus 5 in the other lobes) revealed a consistent pattern: small subcortical input (1.3% cumulative FLN), high local intrinsic connectivity (80% FLN), high-input form neighboring areas (15% cumulative FLN), and weak long-range corticocortical connectivity (3% cumulative FLN). Corticocortical FLN values of projections to areas V1, V2, and V4 showed heavy-tailed, lognormal distributions spanning 5 orders of magnitude that were consistent, demonstrating significant connectivity profiles. These results indicate that 1) connection weight heterogeneity plays an important role in determining cortical network specificity, 2) high investment in local projections highlights the importance of local processing, and 3) transmission of information across multiple hierarchy levels mainly involves pathways having low FLN values
- …