73 research outputs found

    The effect of moderate alcohol consumption on adiponectin oligomers and muscle oxidative capacity: a human intervention study

    Get PDF
    Aims/hypothesis The aim of this study was to investigate whether moderate alcohol consumption increases plasma high molecular weight (HMW) adiponectin and/or muscle oxidative capacity. Materials and methods Eleven lean (BMI 18 - 25 kg/m(2)) and eight overweight ( BMI >= 27 kg/m(2)) men consumed 100 ml whisky (similar to 32 g alcohol) or water daily for 4 weeks in a randomised, controlled, crossover trial. After each treatment period, muscle biopsies and fasting blood samples were collected. Results Adiponectin concentrations increased ( p <0.001) by 12.5% after 4 weeks of moderate alcohol consumption. Moderate alcohol consumption tended to increase HMW adiponectin by 57% ( p= 0.07) and medium molecular weight adiponectin by 12.5% ( p= 0.07), but not low molecular weight (LMW) adiponectin. Skeletal muscle citrate synthase, cytochrome c oxidase and beta-3-hydroxyacyl coenzyme A dehydrogenase (beta-HAD) activity were not changed after moderate alcohol consumption, but an interaction between alcohol consumption and BMI was observed for cytochrome c oxidase ( p= 0.072) and citrate synthase ( p= 0.102) activity. Among lean men, moderate alcohol consumption tended to increase cytochrome c oxidase ( p= 0.08) and citrate synthase activity ( p= 0.12) by 23 and 26%, respectively, but not among overweight men. In particular, plasma HMW adiponectin correlated positively with activities of skeletal muscle citrate synthase ( r= 0.64, p= 0.009), cytochrome c oxidase ( p= 0.59, p= 0.009) and beta-HAD ( r= 0.46, p= 0.056), while such correlation was not present for LMW adiponectin. Whole-body insulin sensitivity and intramyocellular triacylglycerol content were not affected by moderate alcohol consumption. Conclusions/interpretation Moderate alcohol consumption increases adiponectin concentrations, and in particular HMW adiponectin. Concentrations of HMW adiponectin in particular were positively associated with skeletal muscle oxidative capacity

    CSF-Biomarkers in Olympic Boxing: Diagnosis and Effects of Repetitive Head Trauma

    Get PDF
    Background Sports-related head trauma is common but still there is no established laboratory test used in the diagnostics of minimal or mild traumatic brain injuries. Further the effects of recurrent head trauma on brain injury markers are unknown. The purpose of this study was to investigate the relationship between Olympic (amateur) boxing and cerebrospinal fluid (CSF) brain injury biomarkers. Methods The study was designed as a prospective cohort study. Thirty Olympic boxers with a minimum of 45 bouts and 25 non-boxing matched controls were included in the study. CSF samples were collected by lumbar puncture 1–6 days after a bout and after a rest period for at least 14 days. The controls were tested once. Biomarkers for acute and chronic brain injury were analysed. Results NFL (mean ± SD, 532±553 vs 135±51 ng/L p = 0.001), GFAP (496±238 vs 247±147 ng/L p<0.001), T-tau (58±26 vs 49±21 ng/L p<0.025) and S-100B (0.76±0.29 vs 0.60±0.23 ng/L p = 0.03) concentrations were significantly increased after boxing compared to controls. NFL (402±434 ng/L p = 0.004) and GFAP (369±113 ng/L p = 0.001) concentrations remained elevated after the rest period. Conclusion Increased CSF levels of T-tau, NFL, GFAP, and S-100B in >80% of the boxers demonstrate that both the acute and the cumulative effect of head trauma in Olympic boxing may induce CSF biomarker changes that suggest minor central nervous injuries. The lack of normalization of NFL and GFAP after the rest period in a subgroup of boxers may indicate ongoing degeneration. The recurrent head trauma in boxing may be associated with increased risk of chronic traumatic brain injury

    Cardiac contractile dysfunction in insulin-resistant rats fed a high-fat diet is associated with elevated CD36-mediated fatty acid uptake and esterification

    Get PDF
    Changes in cardiac substrate utilisation leading to altered energy metabolism may underlie the development of diabetic cardiomyopathy. We studied cardiomyocyte substrate uptake and utilisation and the role of the fatty acid translocase CD36 in relation to in vivo cardiac function in rats fed a high-fat diet (HFD).Rats were exposed to an HFD or a low-fat diet (LFD). In vivo cardiac function was monitored by echocardiography. Substrate uptake and utilisation were determined in isolated cardiomyocytes.Feeding an HFD for 8 weeks induced left ventricular dilation in the systolic phase and decreased fractional shortening and the ejection fraction. Insulin-stimulated glucose uptake and proline-rich Akt substrate 40 phosphorylation were 41% (p <0.001) and 45% (p <0.05) lower, respectively, in cardiomyocytes from rats on the HFD. However, long-chain fatty acid (LCFA) uptake was 1.4-fold increased (p <0.001) and LCFA esterification into triacylglycerols and phospholipids was increased 1.4- and 1.5-fold, respectively (both p <0.05), in cardiomyocytes from HFD compared with LFD hearts. In the presence of the CD36 inhibitor sulfo-N-succinimidyloleate, LCFA uptake and esterification were similar in LFD and HFD cardiomyocytes. In HFD hearts CD36 was relocated to the sarcolemma, and basal phosphorylation of a mediator of CD36-trafficking, i.e. protein kinase B (PKB/Akt), was increased.Feeding rats an HFD induced cardiac contractile dysfunction, which was accompanied by the relocation of CD36 to the sarcolemma, and elevated basal levels of phosphorylated PKB/Akt. The permanent presence of CD36 at the sarcolemma resulted in enhanced rates of LCFA uptake and myocardial triacylglycerol accumulation, and may contribute to the development of insulin resistance and diabetic cardiomyopathy

    Increased Expression of Fatty-Acid and Calcium Metabolism Genes in Failing Human Heart

    Get PDF
    Heart failure (HF) involves alterations in metabolism, but little is known about cardiomyopathy-(CM)-specific or diabetes-independent alterations in gene expression of proteins involved in fatty-acid (FA) uptake and oxidation or in calcium-(Ca(2+))-handling in the human heart.RT-qPCR was used to quantify mRNA expression and immunoblotting to confirm protein expression in left-ventricular myocardium from patients with HF (n = 36) without diabetes mellitus of ischaemic (ICM, n = 16) or dilated (DCM, n = 20) cardiomyopathy aetiology, and non-diseased donors (CTL, n = 6).Significant increases in mRNA of genes regulating FA uptake (CD36) and intracellular transport (Heart-FA-Binding Protein (HFABP)) were observed in HF patients vs CTL. Significance was maintained in DCM and confirmed at protein level, but not in ICM. mRNA was higher in DCM than ICM for peroxisome-proliferator-activated-receptor-alpha (PPARA), PPAR-gamma coactivator-1-alpha (PGC1A) and CD36, and confirmed at the protein level for PPARA and CD36. Transcript and protein expression of Ca(2+)-handling genes (Two-Pore-Channel 1 (TPCN1), Two-Pore-Channel 2 (TPCN2), and Inositol 1,4,5-triphosphate Receptor type-1 (IP3R1)) increased in HF patients relative to CTL. Increases remained significant for TPCN2 in all groups but for TPCN1 only in DCM. There were correlations between FA metabolism and Ca(2+)-handling genes expression. In ICM there were six correlations, all distinct from those found in CTL. In DCM there were also six (all also different from those found in CTL): three were common to and three distinct from ICM.DCM-specific increases were found in expression of several genes that regulate FA metabolism, which might help in the design of aetiology-specific metabolic therapies in HF. Ca(2+)-handling genes TPCN1 and TPCN2 also showed increased expression in HF, while HF- and CM-specific positive correlations were found among several FA and Ca(2+)-handling genes

    Wild geese do not increase flight behaviour prior to migration

    No full text
    Hypertrophy of the flight muscles is regularly observed in birds prior to long-distance migrations. We tested the hypothesis that a large migratory bird would increase flight behaviour prior to migration, in order to cause hypertrophy of the flight muscles, and upregulate key components of the aerobic metabolic pathways. Implantable data loggers were used to record year-round heart rate in six wild barnacle geese (Branta leucopsis), and the amount of time spent in flight each day was identified. Time in flight per day did not significantly increase prior to either the spring or the autumn migration, both between time periods prior to migration (5, 10 and 15 days), or when compared with a control period of low activity during winter. The lack of significant increase in flight prior to migration suggests that approximately 22 min per day is sufficient to maintain the flight muscles in condition for prolonged long-distance flight. This apparent lack of a requirement for increased flight activity prior to migration may be attributable to pre-migratory mass gains in the geese increasing workload during short flights, potentially prompting hypertrophy of the flight muscles
    corecore