11 research outputs found

    TokaMaker: An open-source time-dependent Grad-Shafranov tool for the design and modeling of axisymmetric fusion devices

    Full text link
    In this paper, we present a new static and time-dependent MagnetoHydroDynamic (MHD) equilibrium code, TokaMaker, for axisymmetric configurations of magnetized plasmas, based on the well-known Grad-Shafranov equation. This code utilizes finite element methods on an unstructured triangular grid to enable capturing accurate machine geometry and simple mesh generation from engineering-like descriptions of present and future devices. The new code is designed for ease of use without sacrificing capability and speed through a combination of Python, Fortran, and C/C++ components. A detailed description of the numerical methods of the code, including a novel formulation of the boundary conditions for free-boundary equilibria, and validation of the implementation of those methods using both analytic test cases and cross-code validation is shown. Results show expected convergence across tested polynomial orders for analytic and cross-code test cases

    Induction of myelination in the central nervous system by electrical activity.

    No full text
    The oligodendrocyte is the myelin-forming cell in the central nervous system. Despite the close interaction between axons and oligodendrocytes, there is little evidence that neurons influence myelinogenesis. On the contrary, newly differentiated oligodendrocytes, which mature in culture in the total absence of neurons, synthesize the myelin-specific constituents of oligodendrocytes differentiated in vivo and even form myelin-like figures. Neuronal electrical activity may be required, however, for the appropriate formation of the myelin sheath. To investigate the role of electrical activity on myelin formation, we have used highly specific neurotoxins, which can either block (tetrodotoxin) or increase (alpha-scorpion toxin) the firing of neurons. We show that myelination can be inhibited by blocking the action potential of neighboring axons or enhanced by increasing their electrical activity, clearly linking neuronal electrical activity to myelinogenesis
    corecore