649 research outputs found

    Superficial simplicity of the 2010 El Mayor–Cucapah earthquake of Baja California in Mexico

    Get PDF
    The geometry of faults is usually thought to be more complicated at the surface than at depth and to control the initiation, propagation and arrest of seismic ruptures. The fault system that runs from southern California into Mexico is a simple strike-slip boundary: the west side of California and Mexico moves northwards with respect to the east. However, the M_w 7.2 2010 El Mayor–Cucapah earthquake on this fault system produced a pattern of seismic waves that indicates a far more complex source than slip on a planar strike-slip fault. Here we use geodetic, remote-sensing and seismological data to reconstruct the fault geometry and history of slip during this earthquake. We find that the earthquake produced a straight 120-km-long fault trace that cut through the Cucapah mountain range and across the Colorado River delta. However, at depth, the fault is made up of two different segments connected by a small extensional fault. Both segments strike N130° E, but dip in opposite directions. The earthquake was initiated on the connecting extensional fault and 15 s later ruptured the two main segments with dominantly strike-slip motion. We show that complexities in the fault geometry at depth explain well the complex pattern of radiated seismic waves. We conclude that the location and detailed characteristics of the earthquake could not have been anticipated on the basis of observations of surface geology alone

    The reduction of seed-specific dehydrins reduces seed longevity in Arabidopsis thaliana

    Get PDF
    Dehydrins are late embryogenesis abundant (LEA) proteins that accumulate during seed maturation and in response to abiotic stresses in vegetative tissues. They are thought to protect cellular components from dehydration stress. However, whether they play a role in survival in the dry state is not clear. In this study, an RNA interference (RNAi)-construct against the seed-expressed dehydrin of Arabidopsis thaliana, LEA14 (At2g21490), was introduced to wild-type plants, which led to a strong reduction in transcript abundance of the target gene as well as that of two other seed-expressed dehydrin homologues, XERO1 (At3g50980) and RAB18 (responsive to abscisic acid 18, At5g66400) in the transformants. Mature, dry seeds from the RNAi plants germinated to at least 95% after rehydration, indicating that seed desiccation tolerance was not affected, while they exhibited a twofold reduction in longevity. When stored at 75% relative humidity and 35°C, the seeds of two independent RNAi lines lost 50% of their viability in 10 d and 5 d, respectively, while it took 17 d for wild-type seeds to lose 50% viability. In addition, when seeds were imbibed in the presence of 100 mM NaCl, the seeds of RNAi plants exhibited reduced germination compared to wild-type seeds, suggesting that at least one of the three seed-specific dehydrins plays a role both against deterioration during storage at low moisture content and when imbibed tissues are submitted to salt stress at high moisture

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ℏω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.85−0.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2−^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    The 2013 M_w 7.7 Balochistan Earthquake: Seismic Potential of an Accretionary Wedge

    Get PDF
    Great earthquakes rarely occur within active accretionary prisms, despite the intense long‐term deformation associated with the formation of these geologic structures. This paucity of earthquakes is often attributed to partitioning of deformation across multiple structures as well as aseismic deformation within and at the base of the prism (Davis et al., 1983). We use teleseismic data and satellite optical and radar imaging of the 2013 M_w 7.7 earthquake that occurred on the southeastern edge of the Makran plate boundary zone to study this unexpected earthquake. We first compute a multiple point‐source solution from W‐phase waveforms to estimate fault geometry and rupture duration and timing. We then derive the distribution of subsurface fault slip from geodetic coseismic offsets. We sample for the slip posterior probability density function using a Bayesian approach, including a full description of the data covariance and accounting for errors in the elastic structure of the crust. The rupture nucleated on a subvertical segment, branching out of the Chaman fault system, and grew into a major earthquake along a 50° north‐dipping thrust fault with significant along‐strike curvature. Fault slip propagated at an average speed of 3.0  km/s for about 180 km and is concentrated in the top 10 km with no displacement on the underlying dĂ©collement. This earthquake does not exhibit significant slip deficit near the surface, nor is there significant segmentation of the rupture. We propose that complex interaction between the subduction accommodating the Arabia–Eurasia convergence to the south and the Ornach Nal fault plate boundary between India and Eurasia resulted in the significant strain gradient observed prior to this earthquake. Convergence in this region is accommodated both along the subduction megathrust and as internal deformation of the accretionary wedge

    QRFP receptor in GtoPdb v.2023.1

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [19]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [17]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors. QRFP receptor was identified as a Gs-coupled GPCR [6, 14] that's activated by the endogenous peptides QRFP43 (43RFa) and QRFP26 (26RFa) [6, 14, 11]. However, Gq- and Gi/o-mediated signaling was also reported [11, 25]. Two naturally occurring mutations in the human QRFP receptor lead to distinct and opposite 26RFa-evoked signaling bias [20]

    QRFP receptor (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database

    Get PDF
    The human gene encoding the QRFP receptor (nomenclature as agreed by the NC-IUPHAR Subcommittee on the QRFP receptor [16]; QRFPR, formerly known as the Peptide P518 receptor), previously designated as an orphan GPCR receptor was identified in 2001 by Lee et al. from a hypothalamus cDNA library [15]. However, the reported cDNA (AF411117) is a chimera with bases 1-127 derived from chromosome 1 and bases 155-1368 derived from chromosome 4. When corrected, QRFPR (also referred to as SP9155 or AQ27) encodes a 431 amino acid protein that shares sequence similarities in the transmembrane spanning regions with other peptide receptors. These include neuropeptide FF2 (38%), neuropeptide Y2 (37%) and galanin Gal1 (35%) receptors
    • 

    corecore