646 research outputs found

    XMM Follow-Up Observations of Three Swift BAT-Selected Active Galactic Nuclei

    Full text link
    We present XMM-Newton observations of three AGN taken as part of a hunt to find very heavily obscured Compton-thick AGN. For obscuring columns greater than 10^25 cm^-2, AGN are only visible at energies below 10 keV via reflected/scattered radiation, characterized by a flat power-law. We therefore selected three objects (ESO 417-G006, IRAS 05218-1212, and MCG -01-05-047) from the Swift BAT hard X-ray survey catalog with Swift X-ray Telescope XRT 0.5-10 keV spectra with flat power-law indices as candidate Compton-thick sources for follow-up observations with the more sensitive instruments on XMM-Newton. The XMM spectra, however, rule out reflection-dominated models based on the weakness of the observed Fe K-alpha lines. Instead, the spectra are well-fit by a model of a power-law continuum obscured by a Compton-thin absorber, plus a soft excess. This result is consistent with previous follow-up observations of two other flat-spectrum BAT-detected AGN. Thus, out of the six AGN in the 22-month BAT catalog with apparently flat Swift XRT spectra, all five that have had follow-up observations are not likely Compton-thick. We also present new optical spectra of two of these objects, IRAS 05218-1212 and MCG -01-05-047. Interestingly, though both these AGN have similar X-ray spectra, their optical spectra are completely different, adding evidence against the simplest form of the geometric unified model of AGN. IRAS 05218-1212 appears in the optical as a Seyfert 1, despite the ~8.5x10^22 cm^-2 line-of-sight absorbing column indicated by its X-ray spectrum. MCG -01-05-047's optical spectrum shows no sign of AGN activity; it appears as a normal galaxy.Comment: 18 pages including 4 figures, accepted by Ap

    A Multi-Wavelength Study of the Nature of Type 1.8/1.9 Seyfert Galaxies

    Full text link
    We focus on determining the underlying physical cause of a Seyfert galaxy's appearance as type a 1.8 or 1.9. Are these "intermediate" Seyfert types typical Seyfert 1 nuclei with reddened broad-line regions? Or are they objects with intrinsically weak continua and broad emission lines? We compare measurements of the optical reddening of the narrow and broad-line regions with each other and with the X-ray column derived from XMM-Newton 0.5-10 keV spectra to determine the presence and location of dust in the line of sight. We also searched the literature to see if the objects showed evidence for broad-line variability, and determined if the changes were consistent with a change in reddening or a change in the intrinsic ionizing continuum flux. We find that 10 of 19 objects previously classified as Seyfert 1.8/1.9s received this designation due to their low continuum flux. In four objects the classification was due to BLR reddening, either by the torus or dust structures in the vicinity of the NLR; in the remaining five objects there is not sufficient evidence to favor one scenario over the other. These findings imply that, in general, samples of 1.8/1.9s are not suitable for use in studies of the gas and dust in the central torus.Comment: 85 pages, accepted by Ap

    Long-Term Variability in the Optical Spectrum of the Seyfert Galaxy NGC 2992

    Full text link
    New spectra of NGC 2992 from the Cerro Tololo Inter-American Observatory show that this nearby AGN has changed its type classification to a Seyfert 2 in 2006. It was originally classified as a Seyfert 1.9, and has been previously seen as a Seyfert 1.5 with strong broad Halpha emission. A comparison of the reddening and equivalent hydrogen column density derived for the narrow-line region from these new data with those previously calculated for different regions closer to the nucleus shows them to be very similar, and suggests that these different regions are all being absorbed by the same opacity source, a large 100-pc scale dust lane running across the nucleus. However, obscuration by dust in this lane is probably not responsible for classification changes which occur in only a few years. It is more likely that NGC 2992's observed variations are due to a highly variable ionizing continuum. We therefore conclude that, although NGC 2992 was originally identified as a Seyfert 1.9, this was not because of an oblique viewing angle through the atmosphere of a central dusty torus, but because its active nucleus was identified when it was in a low continuum state.Comment: To be published in the Astronomical Journal. 19 pages, with 5 figure

    The First IRAM/PdBI Polarimetric Millimeter Survey of Active Galactic Nuclei. I. Global Properties of the Sample

    Full text link
    We have studied the linear polarization of 86 active galactic nuclei (AGN) in the observed frequency range 80-267 GHz (3.7-1.1mm in wavelength), corresponding to rest-frame frequencies 82-738 GHz, with the IRAM Plateau de Bure Interferometer (PdBI). The large number of measurements, 441, makes our analysis the largest polarimetric AGN survey in this frequency range to date. We extracted polarization parameters via earth rotation polarimetry with unprecedented median precisions of ~0.1% in polarization fractions and ~1.2 degrees in polarization angles. For 73 of 86 sources we detect polarization at least once. The degrees of polarization are as high as ~19%, with the median over all sources being ~4%. Source fluxes and polarizations are typically highly variable, with fractional variabilities up to ~60%. We find that BLLac sources have on average the highest level of polarization. There appears to be no correlation between degree of polarization and redshift, indicating that there has been no substantial change of polarization properties since z~2.4. Our polarization and spectral index distributions are in good agreement with results found from various samples observed at cm/radio wavelengths; thus our frequency range is likely tracing the signature of synchrotron radiation without noticeable contributions from other emission mechanisms. The "millimeter-break" located at frequencies >1 THz appears to be not detectable in the frequency range covered by our survey.Comment: 19 pages, 9 figures, 2 long tables (p. 12-19). Accepted by A&A

    Evidence for a Long-Standing Top-Heavy IMF in the Central Parsec of the Galaxy

    Full text link
    We classify 329 late-type giants within 1 parsec of Sgr A*, using the adaptive optics integral field spectrometer SINFONI on the VLT. These observations represent the deepest spectroscopic data set so far obtained for the Galactic Center, reaching a 50% completeness threshold at the approximate magnitude of the helium-burning red clump (Ks ~ 15.5 mag.). Combining our spectroscopic results with NaCo H and Ks photometry, we construct an observed Hertzsprung-Russell diagram, which we quantitatively compare to theoretical distributions of various star formation histories of the inner Galaxy, using a chi-squared analysis. Our best-fit model corresponds to continuous star formation over the last 12 Gyr with a top-heavy initial mass function (IMF). The similarity of this IMF to the IMF observed for the most recent epoch of star formation is intriguing and perhaps suggests a connection between recent star formation and the stars formed throughout the history of the Galactic Center.Comment: 18 pages, 10 figures, Accepted to ApJ: 15 July 200

    On the orientation of the Sagittarius A* system

    Full text link
    The near-infrared emission from the black hole at the Galactic center (Sgr A*) has unique properties. The most striking feature is a suggestive periodic sub-structure that has been observed in a couple of flares so far. Using near-infrared polarimetric observations and modelling the quasi-periodicity in terms of an orbiting blob, we try to constrain the three dimensional orientation of the Sgr A* system. We report on so far unpublished polarimetric data from 2003. They support the observations of a roughly constant mean polarization angle of 60 degr \pm 20 degr from 2004-2006. Prior investigations of the 2006 data are deepened. In particular, the blob model fits are evaluated such that constraints on the position angle of Sgr A* can be derived. Confidence contours in the position-inclination angle plane are derived. On a 3sigma level the position angle of the equatorial plane normal is in the range 60 degr - 108 degr (east of north) in combination with a large inclination angle. This agrees well with recent independent work in which radio spectral/morphological properties of Sgr A* and X-ray observations, respectively, have been used. However, the quality of the presently available data and the uncertainties in our model bring some ambiguity to our conclusions.Comment: 10 pages, 4 figures; Research Note accepted by A&A for publicatio

    Thermodynamic Properties of the One-Dimensional Extended Quantum Compass Model in the Presence of a Transverse Field

    Full text link
    The presence of a quantum critical point can significantly affect the thermodynamic properties of a material at finite temperatures. This is reflected, e.g., in the entropy landscape S(T; c) in the vicinity of a quantum critical point, yielding particularly strong variations for varying the tuning parameter c such as magnetic field. In this work we have studied the thermodynamic properties of the quantum compass model in the presence of a transverse field. The specific heat, entropy and cooling rate under an adiabatic demagnetization process have been calculated. During an adiabatic (de)magnetization process temperature drops in the vicinity of a field-induced zero-temperature quantum phase transitions. However close to field-induced quantum phase transitions we observe a large magnetocaloric effect
    corecore