491 research outputs found

    Further Delineation of Duplications of ARX Locus Detected in Male Patients with Varying Degrees of Intellectual Disability

    Get PDF
    The X-linked gene encoding aristaless-related homeobox (ARX) is a bi-functional transcription factor capable of activating or repressing gene transcription, whose mutations have been found in a wide spectrum of neurodevelopmental disorders (NDDs); these include cortical malformations, pae-diatric epilepsy, intellectual disability (ID) and autism. In addition to point mutations, duplications of the ARX locus have been detected in male patients with ID. These rearrangements include telen-cephalon ultraconserved enhancers, whose structural alterations can interfere with the control of ARX expression in the developing brain. Here, we review the structural features of 15 gain copy-number variants (CNVs) of the ARX locus found in patients presenting wide-ranging phenotypic variations including ID, speech delay, hypotonia and psychiatric abnormalities. We also report on a further novel Xp21.3 duplication detected in a male patient with moderate ID and carrying a fully duplicated copy of the ARX locus and the ultraconserved enhancers. As consequences of this rearrangement, the patient-derived lymphoblastoid cell line shows abnormal activity of the ARX-KDM5C-SYN1 regulatory axis. Moreover, the three-dimensional (3D) structure of the Arx locus, both in mouse embryonic stem cells and cortical neurons, provides new insight for the functional consequences of ARX duplications. Finally, by comparing the clinical features of the 16 CNVs affecting the ARX locus, we conclude that—depending on the involvement of tissue-specific enhancers—the ARX duplications are ID-associated risk CNVs with variable expressivity and penetrance

    Extracellular Vesicle-Associated Transitory Cell Wall Components and Their Impact on the Interaction of Fungi with Host Cells

    Get PDF
    Submitted by Fabricia Pimenta ([email protected]) on 2018-06-29T18:34:23Z No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5)Approved for entry into archive by Fabricia Pimenta ([email protected]) on 2019-01-11T18:29:02Z (GMT) No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5)Made available in DSpace on 2019-01-11T18:29:02Z (GMT). No. of bitstreams: 1 ve_Marcio_Rodrigues_etal_CDTS_2016.pdf: 690221 bytes, checksum: a96164d483123b78f71bffabda9ffa1b (MD5) Previous issue date: 2016-07-08Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Stony Brook University. Department of Molecular Genetics and Microbiology. Stony Brook, NY, USA / Veterans Administration Medical Center. Northport, NY, USA.Albert Einstein College of Medicine. Department of Microbiology and Immunology and Medicine. Bronx, NY, USA.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Fundação Oswaldo Cruz. Centro de Desenvolvimento Tecnológico em Saúde. Rio de Janeiro, RJ, Brazil / Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Professor Paulo de Góes. Laboratório de Glicobiologia de Eucariotos. Rio de Janeiro, RJ, Brazil.Classic cell wall components of fungi comprise the polysaccharides glucans and chitin, in association with glycoproteins and pigments. During the last decade, however, system biology approaches clearly demonstrated that the composition of fungal cell walls include atypical molecules historically associated with intracellular or membrane locations. Elucidation of mechanisms by which many fungal molecules are exported to the extracellular space suggested that these atypical components are transitorily located to the cell wall. The presence of extracellular vesicles (EVs) at the fungal cell wall and in culture supernatants of distinct pathogenic species suggested a highly functional mechanism of molecular export in these organisms. Thus, the passage of EVs through fungal cell walls suggests remarkable molecular diversity and, consequently, a potentially variable influence on the host antifungal response. On the basis of information derived from the proteomic characterization of fungal EVs from the yeasts Cryptoccocus neoformans and Candida albicans and the dimorphic fungi Histoplasma capsulatum and Paracoccidioides brasiliensis, our manuscript is focused on the clear view that the fungal cell wall is much more complex than previously thought

    Histone Acetylation Defects in Brain Precursor Cells: A Potential Pathogenic Mechanism Causing Proliferation and Differentiation Dysfunctions in Mitochondrial Aspartate-Glutamate Carrier Isoform 1 Deficiency

    Get PDF
    Mitochondrial aspartate-glutamate carrier isoform 1 (AGC1) deficiency is an ultra-rare genetic disease characterized by global hypomyelination and brain atrophy, caused by mutations in the SLC25A12 gene leading to a reduction in AGC1 activity. In both neuronal precursor cells and oligodendrocytes precursor cells (NPCs and OPCs), the AGC1 determines reduced proliferation with an accelerated differentiation of OPCs, both associated with gene expression dysregulation. Epigenetic regulation of gene expression through histone acetylation plays a crucial role in the proliferation/differentiation of both NPCs and OPCs and is modulated by mitochondrial metabolism. In AGC1 deficiency models, both OPCs and NPCs show an altered expression of transcription factors involved in the proliferation/differentiation of brain precursor cells (BPCs) as well as a reduction in histone acetylation with a parallel alteration in the expression and activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, histone acetylation dysfunctions have been dissected in in vitro models of AGC1 deficiency OPCs (Oli-Neu cells) and NPCs (neurospheres), in physiological conditions and following pharmacological treatments. The inhibition of HATs by curcumin arrests the proliferation of OPCs leading to their differentiation, while the inhibition of HDACs by suberanilohydroxamic acid (SAHA) has only a limited effect on proliferation, but it significantly stimulates the differentiation of OPCs. In NPCs, both treatments determine an alteration in the commitment toward glial cells. These data contribute to clarifying the molecular and epigenetic mechanisms regulating the proliferation/differentiation of OPCs and NPCs. This will help to identify potential targets for new therapeutic approaches that are able to increase the OPCs pool and to sustain their differentiation toward oligodendrocytes and to myelination/remyelination processes in AGC1 deficiency, as well as in other white matter neuropathologies

    Health-care organization for the management and surveillance of SARS-CoV-2 infection in children during pandemic in Campania region, Italy

    Get PDF
    Background: In comparison with adults, severe acute respiratory syndrome coronavirus (SARS-CoV-2) infection in children has a milder course. The management of children with suspected or confirmed coronavirus disease (COVID-19) needs to be appropriately targeted. Methods: We designed a hub-and-spoke system to provide healthcare indications based on the use of telemedicine and stringent admission criteria, coordinate local stakeholders and disseminate information. Result: Between March 24th and September 24th 2020, the Hub Centre managed a total of 208 children (52% males, median age, 5.2, IQR 2–9.6 years) with suspected or confirmed COVID-19. Among them, 174 were managed in cooperation with family pediatricians and 34 with hospital-based physicians. One hundred-four (50%) received a final diagnosis of SARS-CoV-2 infection. Application of stringent criteria for hospital admission based on clinical conditions, risk factors and respect of biocontainment measures, allowed to manage the majority of cases (74, 71.1%) through telemedicine. Thirty children (28%) were hospitalized (median length 10 days, IQR 5–19 days), mainly due to the presence of persistent fever, mild respiratory distress or co-infection occurring in infant or children with underlying conditions. However, the reasons for admission slightly changed over time. Conclusion: An hub-and-spoke system is effective in coordinate territorial health-care structures involved in management paediatric COVID-19 cases through telemedicine and the definition of stringent hospital admission criteria. The management of children with COVID-19 should be based on clinical conditions, assessed on a case-by-case critical evaluation, as well as on isolation measures, but may vary according to local epidemiological changes

    CD90/Thy-1 is preferentially expressed on blast cells of high risk acute myeloid leukaemias

    Get PDF
    Different transformation mechanisms have been proposed for elderly acute myeloid leukaemia (AML) and secondary AML (sAML) when compared with de novo AML or AML of younger patients. However, little is known regarding differences in the immunophenotypic profile of blast cells in these diseases. We systematically analysed, by flow cytometry, 148 patients affected by de novo (100 cases) or sAML (48 cases). By defining a cut-off level of 20% of CD34+ cells co-expressing CD90, the frequency of CD90+ cases was higher in sAML (40%) versus de novo AML (6%, P < 0.001), elderly AML (>60 years) (24%) versus AML of younger patients (10%, P = 0.010) and poor- versus good-risk karyotypes (according to the Medical Research Council classification, P < 0.001). The correlation between CD90 expression, sAML and unfavourable karyotypes was confirmed by analysing the subset of CD34+ AML cases alone (91/148). Consistently, univariate analysis showed that expression of CD90 was statistically relevant in predicting a shorter survival in CD90+ AML patients (P = 0.042). Our results, demonstrating CD90 expression in AML with unfavourable clinical and biological features, suggest an origin of these diseases from a CD90-expressing haemopoietic progenitor and indicate the use of CD90 as an additional marker of prognostic value in AML

    Deficiency of mitochondrial aspartate-glutamate carrier 1 leads to oligodendrocyte precursor cell proliferation defects both in vitro and in vivo

    Get PDF
    Aspartate-Glutamate Carrier 1 (AGC1) deficiency is a rare neurological disease caused by mutations in the solute carrier family 25, member 12 (SLC25A12) gene, encoding for the mitochondrial aspartate-glutamate carrier isoform 1 (AGC1), a component of the malate-aspartate NADH shuttle (MAS), expressed in excitable tissues only. AGC1 deficiency patients are children showing severe hypotonia, arrested psychomotor development, seizures and global hypomyelination. While the effect of AGC1 deficiency in neurons and neuronal function has been deeply studied, little is known about oligodendrocytes and their precursors, the brain cells involved in myelination. Here we studied the effect of AGC1 down-regulation on oligodendrocyte precursor cells (OPCs), using both in vitro and in vivo mouse disease models. In the cell model, we showed that a reduced expression of AGC1 induces a deficit of OPC proliferation leading to their spontaneous and precocious differentiation into oligodendrocytes. Interestingly, this effect seems to be related to a dysregulation in the expression of trophic factors and receptors involved in OPC proliferation/differentiation, such as Platelet-Derived Growth Factor α (PDGFα) and Transforming Growth Factor βs (TGFβs). We also confirmed the OPC reduction in vivo in AGC1-deficent mice, as well as a proliferation deficit in neurospheres from the Subventricular Zone (SVZ) of these animals, thus indicating that AGC1 reduction could affect the proliferation of different brain precursor cells. These data clearly show that AGC1 impairment alters myelination not only by acting on N-acetyl-aspartate production in neurons but also on OPC proliferation and suggest new potential therapeutic targets for the treatment of AGC1 deficiency

    The addition of rituximab to fludarabine improves clinical outcome in untreated patients with ZAP-70-negative chronic lymphocytic leukemia.

    Get PDF
    Clinical trials of monoclonal antibodies in combination with chemotherapy have reported previously unattained response rates in patients with B-cell chronic lymphocytic leukemia (B-CLL); however, the analysis of ZAP-70 protein and/or CD38 may explain better the discordant outcomes independent of treatment

    Genetic characterization of methicillin-resistant staphylococcus aureus isolates from human bloodstream infections: detection of mlsb resistance

    Get PDF
    In this study we aimed to characterize antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) isolated from bloodstream infections as well as the associated genetic lineages of the isolates. Sixteen MRSA isolates were recovered from bacteremia samples from inpatients between 2016 and 2019. The antimicrobial susceptibility of these isolates was tested by the Kirby–Bauer disk diffusion method against 14 antimicrobial agents. To determine the macrolide–lincosamide–streptogramin B (MLSB) resistance phenotype of the isolates, erythromycin-resistant isolates were assessed by double-disk diffusion (D-test). The resistance and virulence genes were screened by polymerase chain reaction (PCR). All isolates were characterized by multilocus sequence typing (MLST), spa typing, staphylococcal chromosomal cassette mec (SCCmec) typing, and accessory gene regulator (agr) typing. Isolates showed resistance to cefoxitin, penicillin, ciprofloxacin, erythromycin, fusidic acid, clindamycin, and aminoglycosides, confirmed by the presence of the blaZ, ermA, ermC, mphC, msrA/B, aac(6’)-Ie-aph(2’’)-Ia, and ant(4’)-Ia genes. Three isolates were Panton–Valentine-leukocidin-positive. Most strains (n = 12) presented an inducible MLSB phenotype. The isolates were ascribed to eight spa-types (t747, t002, t020, t1084, t008, t10682, t18526, and t1370) and four MLSTs (ST22, ST5, ST105, and ST8). Overall, most (n = 12) MRSA isolates had a multidrug-resistance profile with inducible MLSB phenotypes and belonged to epidemic MRSA clones.info:eu-repo/semantics/publishedVersio

    Diagnostic and prognostic value of B4GALT1 hypermethylation and its clinical significance as a novel circulating cell-free DNA biomarker in colorectal cancer

    Get PDF
    Epigenetic modifications of glyco-genes have been documented in different types of cancer and are tightly linked to proliferation, invasiveness, metastasis, and drug resistance. This study aims to investigate the diagnostic, prognostic, and therapy-response predictive value of the glyco-gene B4GALT1 in colorectal cancer (CRC) patients. A Kaplan-Meier analysis was conducted in 1418 CRC patients (GEO and TCGA datasets) to assess the prognostic and therapy-response predictive values of the aberrant expression and methylation status of B4GALT1. Quantitative methylation-specific PCR (QMSP) and droplet digital quantitative methylation-specific PCR (dd-QMSP) were respectively used to detect hypermethylated B4GALT1 in metastasis and plasma in four cohorts of metastatic CRC cases (mCRC). Both the downregulated expression and promoter hypermethylation of B4GALT1 have a negative prognostic impact on CRC. Interestingly a low expression level of B4GALT1 was significantly associated with poor cetuximab response (progression-free survival (PFS) p = 0.01) particularly in wild-type (WT)-KRAS patients (p = 0.03). B4GALT1 promoter was aberrantly methylated in liver and lung metastases. The detection of hypermethylated B4GALT1 in plasma of mCRC patients showed a highly discriminative receiver operating characteristic (ROC) curve profile (area under curve (AUC) value 0.750; 95% CI: 0.592-0.908, p = 0.008), clearly distinguishing mCRC patients from healthy controls. Based on an optimal cut-off value defined by the ROC analysis, B4GALT1 yield a 100% specificity and a 50% sensitivity. These data support the potential value of B4GALT1 as an additional novel biomarker for the prediction of cetuximab response, and as a specific and sensitive diagnostic circulating biomarker that can be detected in CRC
    corecore