636 research outputs found

    Testing Born-Infeld electrodynamics in waveguides

    Get PDF
    Waveguides can be employed to test non-linear effects in electrodynamics. We solve Born-Infeld equations for TE waves in a rectangular waveguide. We show that the energy velocity acquires a dependence on the amplitude, and harmonic components appear as a consequence of the non-linear behavior.Comment: 3 pages. To appear in PR

    The Classical Relativistic Quark Model in the Rest-Frame Wigner-Covariant Coulomb Gauge

    Get PDF
    The system of N scalar particles with Grassmann-valued color charges plus the color SU(3) Yang-Mills field is reformulated on spacelike hypersurfaces. The Dirac observables are found and the physical invariant mass of the system in the Wigner-covariant rest-frame instant form of dynamics (covariant Coulomb gauge) is given. From the reduced Hamilton equations we extract the second order equations of motion both for the reduced transverse color field and the particles. Then, we study this relativistic scalar quark model, deduced from the classical QCD Lagrangian and with the color field present, in the N=2 (meson) case. A special form of the requirement of having only color singlets, suited for a field-independent quark model, produces a ``pseudoclassical asymptotic freedom" and a regularization of the quark self-energy.Comment: 81 pages, RevTe

    Non-Newtonian Mechanics

    Get PDF
    The classical motion of spinning particles can be described without employing Grassmann variables or Clifford algebras, but simply by generalizing the usual spinless theory. We only assume the invariance with respect to the Poincare' group; and only requiring the conservation of the linear and angular momenta we derive the zitterbewegung: namely the decomposition of the 4-velocity in the newtonian constant term p/m and in a non-newtonian time-oscillating spacelike term. Consequently, free classical particles do not obey, in general, the Principle of Inertia. Superluminal motions are also allowed, without violating Special Relativity, provided that the energy-momentum moves along the worldline of the center-of-mass. Moreover, a non-linear, non-constant relation holds between the time durations measured in different reference frames. Newtonian Mechanics is re-obtained as a particular case of the present theory: namely for spinless systems with no zitterbewegung. Introducing a Lagrangian containing also derivatives of the 4-velocity we get a new equation of the motion, actually a generalization of the Newton Law a=F/m. Requiring the rotational symmetry and the reparametrization invariance we derive the classical spin vector and the conserved scalar Hamiltonian, respectively. We derive also the classical Dirac spin and analyze the general solution of the Eulero-Lagrange equation for Dirac particles. The interesting case of spinning systems with zero intrinsic angular momentum is also studied.Comment: LaTeX; 27 page

    The quantum algebra of superspace

    Full text link
    We present the complete set of N=1N=1, D=4D=4 quantum algebras associated to massive superparticles. We obtain the explicit solution of these algebras realized in terms of unconstrained operators acting on the Hilbert space of superfields. These solutions are expressed using the chiral, anti-chiral and tensorial projectors which define the three irreducible representations of the supersymmetry on the superfields. In each case the space-time variables are non-commuting and their commutators are proportional to the internal angular momentum of the representation. The quantum algebra associated to the chiral or the anti-chiral projector is the one obtained by the quantization of the Casalbuoni-Brink-Schwarz (superspin 0) massive superparticle. We present a new superparticle action for the (superspin 1/2) case and show that their wave functions are the ones associated to the irreducible tensor multiplet.Comment: 20 pages;changes in the nomenclatur

    Effective field theories for QED bound states: extending Nonrelativistic QED to study retardation effects

    Full text link
    Nonrelativistic QED bound states are difficult to study because of the presence of at least three widely different scales: the masses, three-momenta (pip_i) and kinetic energies (KiK_i) of the constituents. Nonrelativistic QED (NRQED), an effective field theory developed by Caswell and Lepage, simplifies greatly bound state calculations by eliminating the masses as dynamical scales. As we demonstrate, NRQED diagrams involving only photons of energy EγpiE_\gamma \simeq p_i contribute, in any calculation, to a unique order in α\alpha. This is not the case, however, for diagrams involving photons with energies EγKiE_\gamma \simeq K_i (``retardation effects"), for which no simple counting counting rules can be given. We present a new effective field theory in which the contribution of those ultra-soft photons can be isolated order by order in α\alpha. This is effectively accomplished by performing a multipole expansion of the NRQED vertices.Comment: 39 pages, 9 Postscript figures, uses Rev.tex V3.0 and epsf.te

    Post-Newtonian accurate parametric solution to the dynamics of spinning compact binaries in eccentric orbits: The leading order spin-orbit interaction

    Full text link
    We derive Keplerian-type parametrization for the solution of post-Newtonian (PN) accurate conservative dynamics of spinning compact binaries moving in eccentric orbits. The PN accurate dynamics that we consider consists of the third post-Newtonian accurate conservative orbital dynamics influenced by the leading order spin effects, namely the leading order spin-orbit interactions. The orbital elements of the representation are explicitly given in terms of the conserved orbital energy, angular momentum and a quantity that characterizes the leading order spin-orbit interactions in Arnowitt, Deser, and Misner-type coordinates. Our parametric solution is applicable in the following two distinct cases: (i) the binary consists of equal mass compact objects, having two arbitrary spins, and (ii) the binary consists of compact objects of arbitrary mass, where only one of them is spinning with an arbitrary spin. As an application of our parametrization, we present gravitational wave polarizations, whose amplitudes are restricted to the leading quadrupolar order, suitable to describe gravitational radiation from spinning compact binaries moving in eccentric orbits. The present parametrization will be required to construct `ready to use' reference templates for gravitational waves from spinning compact binaries in inspiralling eccentric orbits. Our parametric solution for the post-Newtonian accurate conservative dynamics of spinning compact binaries clearly indicates, for the cases considered, the absence of chaos in these systems. Finally, we note that our parametrization provides the first step in deriving a fully second post-Newtonian accurate `timing formula', that may be useful for the radio observations of relativistic binary pulsars like J0737-3039.Comment: 18 pages, accepted by Phys. Rev.

    Direct perturbation theory on the shift of Electron Spin Resonance

    Full text link
    We formulate a direct and systematic perturbation theory on the shift of the main paramagnetic peak in Electron Spin Resonance, and derive a general expression up to second order. It is applied to one-dimensional XXZ and transverse Ising models in the high field limit, to obtain explicit results including the polarization dependence for arbitrary temperature.Comment: 5 pages (no figures) in REVTE

    The Kepler equation for inspiralling compact binaries

    Get PDF
    Compact binaries consisting of neutron stars / black holes on eccentric orbit undergo a perturbed Keplerian motion. The perturbations are either of relativistic origin or are related to the spin, mass quadrupole and magnetic dipole moments of the binary components. The post-Newtonian motion of such systems decouples into radial and angular parts. We present here for the first time the radial motion of such a binary encoded in a generalized Kepler equation, with the inclusion of all above-mentioned contributions, up to linear order in the perturbations. Together with suitably introduced parametrizations, the radial motion is solved completely

    Classical String in Curved Backgrounds

    Get PDF
    The Mathisson-Papapetrou method is originally used for derivation of the particle world line equation from the covariant conservation of its stress-energy tensor. We generalize this method to extended objects, such as a string. Without specifying the type of matter the string is made of, we obtain both the equations of motion and boundary conditions of the string. The world sheet equations turn out to be more general than the familiar minimal surface equations. In particular, they depend on the internal structure of the string. The relevant cases are classified by examining canonical forms of the effective 2-dimensional stress-energy tensor. The case of homogeneously distributed matter with the tension that equals its mass density is shown to define the familiar Nambu-Goto dynamics. The other three cases include physically relevant massive and massless strings, and unphysical tahyonic strings.Comment: 12 pages, REVTeX 4. Added a note and one referenc

    Image restoration using the chiral Potts spin-glass

    Get PDF
    We report on the image reconstruction (IR) problem by making use of the random chiral q-state Potts model, whose Hamiltonian possesses the same gauge invariance as the usual Ising spin glass model. We show that the pixel representation by means of the Potts variables is suitable for the gray-scale level image which can not be represented by the Ising model. We find that the IR quality is highly improved by the presence of a glassy term, besides the usual ferromagnetic term under random external fields, as very recently pointed out by Nishimori and Wong. We give the exact solution of the infinite range model with q=3, the three gray-scale level case. In order to check our analytical result and the efficiency of our model, 2D Monte Carlo simulations have been carried out on real-world pictures with three and eight gray-scale levels.Comment: RevTex 13 pages, 10 figure
    corecore