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Image restoration using the chiral Potts spin glass

Domenico M. Carlucci
Instituut voor Theoretische Fysica, K. U. Leuven, B-3001 Leuven, Belgium

Jun-ichi Inoue
Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro-ku, Tokyo 152-8551, Japan

~Received 9 April 1999!

We report on the image reconstruction~IR! problem by making use of the random chiralq-state Potts model,
whose Hamiltonian possesses the same gauge invariance as the usual Ising spin glass model. We show that the
pixel representation by means of the Potts variables is suitable for the gray-scale level image which cannot be
represented by the Ising model. We find that the IR quality is highly improved by the presence of a glassy term,
besides the usual ferromagnetic term under random external fields, as very recently pointed out by Nishimori
and Wong. We give the exact solution of the infinite range model withq53, the three-gray-scale-level case.
In order to check our analytical result and the efficiency of our model, two-dimensional Monte Carlo simula-
tions have been carried out on real-world pictures with three and eight gray-scale levels.
@S1063-651X~99!15008-6#

PACS number~s!: 02.50.2r, 05.20.2y, 05.50.1q

I. INTRODUCTION

Recently, statistical mechanical approaches to the prob-
lems of information science have attracted a large amount of
attention of researchers who are working in the field. Among
these, particular interest has been given to techniques by
which one tries to reconstruct an image from its corrupted
version, e.g., sent by a defective fax, a fickle e-mail, etc.
since any data transmission through a channel is in principle
affected by some kind of noise. In the mathematical engi-
neering fields, the traditional way to obtain the optimal re-
covered image has been regarded as a sort of optimization
problem. In this framework, one first constructs the energy
~cost! function so that this function represents the distance
between the original image and the recovered one as prop-
erly as possible; then, one minimizes it using suitable heu-
ristic methods likesimulated annealing@1#. In fact, Geman
and Geman@2# succeeded in constructing a method of image
restoration using simulated annealing, and they discussed in
detail the properties of its convergence including the optimal
annealing schedule.

Successful results in this direction have been reached by
means of the usual techniques of disordered spin systems,
assuming that each spin is naturally associated to a pixel or
bit. In language of the disordered spin systems, the optimi-
zation problems we just mentioned are naturally translated
into a search of the ground state for a system possessing
many local minima of order exp(N). In contrast, Marroquin
et al. @3# found that the temperature of the system plays an
important role for the image-recovering process. From the
statistical mechanical point of view, each recovered image
can be regarded as the equilibrium state of a random spin
system. Marroquinet al. @3# investigated the effect of the
temperature on the quality of image restoration by computer
simulation and found the optimality of finite-temperature im-
age restoration. Recently, this finite-temperature effect on
image restoration was checked in a more careful way by
Pryce and Bruce@4#, although these works were restricted to

numerical simulations. In the context of the convolutional
error-correcting codes, Ruja´n @5# proposed finite-temperature
decoding in which we regard the sign of the local magneti-
zation at a specific temperature~this temperature is well
known as theNishimori temperature@6# in the field of spin
glasses! as the correct bit. Recently Nishimori and Wong@7#
pointed out that the optimal restoration of an image is also
obtained at some specific temperature and showed that image
restoration~IR! and error-correcting codes~ECC! theory can
be treated within a single framework. Indeed, to the usual IR
Hamiltonian, ferromagnetic, and random field terms, they
added a spin-glass term borrowed from the ECC theory@8#
used for aparity check. They could exactly solve the infinite-
range spin model and find the optimal values of the tempera-
ture and field~referred to ashyperparametersfrom now on!
at which the best retrieval quality is achieved. However, their
works are restricted to the case of Ising spin systems and in
this sense they are able to restore black-white pictures. On
the other hand, there remain many open questions about the
restoration of multicolor images or, somehow equivalently,
gray-toned images.

This kind of problem has been also widely studied in the
context of neural networks with multistate neurons, able to
store and retrieve gray-scaled patterns~see@9# and references
therein!. For our purposes, we therefore map the set of the
pixels ontoq-state~chiral! Potts spins, with a ferromagnetic
Hamiltonian in the presence of a random field~conventional
IR! and, further on, a glass term~ECC-like term!. The choice
of the chiral Potts Hamiltonian is motivated by the fact that it
exhibits the same gauge invariance as the Ising glass, al-
though a work for the usual random Potts model is under
consideration. Here, we show that, as in the Ising case@7#,
the presence of the glass term significantly increases the
quality of the reconstructed image. We should mention that
several remarkable studies about IR using the Potts model
have been made by several authors. However, their works
mostly depend on computer simulations. In addition, their
methods ~mean field annealing@10#, cluster algorithm

PHYSICAL REVIEW E SEPTEMBER 1999VOLUME 60, NUMBER 3

PRE 601063-651X/99/60~3!/2547~7!/$15.00 2547 © 1999 The American Physical Society



@11,12#, etc.! are devoted to restorations at zero temperature.
Therefore, it seems that there exist a lot of open questions
about IR using the Potts model, especially, about the perfor-
mance of finite-temperature restoration.

In the next section, we will introduce our model within
the image restoration theory and adopt the overlap as a mea-
sure of the restoration quality. In Sec. III, we will discuss the
infinite-range model and give the exact expression for the
overlap as a function of the temperature and external field,
thus obtaining a relation between the temperature of source
image and that of the restoration temperature. We shall also
see an improvement of the restoration quality by adding the
glassy term. Finally, in Sec. IV, guided by the infinite-range
results, we will give explicit and realistic examples of image
reconstructions for three and eight gray-scale pictures.

II. MODEL AND IR FORMULATION

As already mentioned in the Introduction, we choose to
represent pixels of a gray-scaled image by means of
q-component Potts spin variables. The usual Potts Hamil-
tonianH52(ds is j

admits a complex representation@13# by
means of the identity

ds is j
5

1

q (
r 50

q21

~s i !
r~s j !

q2r , ~1!

where each spin takes on one of theq roots of unity:

s i5expS 2p i

q
Ki D ~Ki50, . . . ,q21!. ~2!

From now on, we will use the notation$j% for the original
pixels and$s% for the variables of the recovering process.
Let us now send the original image through a noise channel
not only by the form ofj i

r itself but also by the following
products j i

rj j
r* 5j i

rj j
q2r . Without loss of generality we

raised the spins and their products to some powerr, since
this corresponds only to a rotation in the complex circle. The
reasons for this choice will be clear soon. For this expres-
sion, the output ($t (r )%,$J(r )%) is stochastically determined
by the channel. For instance, in the case of a Gaussian chan-
nel ~GC! the output functionPout($J

(r )%,$t (r )%u$j%) is given
by

Pout~$J
(r )%,$t (r )%u$j%!

5
1
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1
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3expF2
1

2J2 (
( i j )

(
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q21

~Ji j
(r )2J0j i

rj j
q2r !

3~Ji j
(r )* 2J0j i

q2rj j
r !G

3expF2
1

2t2 (
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(
r 50
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~t i
(r )2t0j i

r !~t i
(r )* 2t0j i

q2r !G ,

~3!

whereJi j
(r ) andt i

(r ) are complex numbers which satisfy

~Ji j
(r )!* 5Ji j

(q2r ) ~t i
(r )!* 5t i

(q2r ) ~4!

in order to ensure the realness of the sums in Eq.~3!.
Obviously, if a noise-free transmission could be achieved,

we would obtaint i
(r )5j i

r andJi j
(r )5j i

q2rj j
r . The conditional

probabilityP($s%u$J(r )%,$t (r )%), which is the probability that
the source sequence is$s% provided that the outputs are$J%
and$t%, according to the Bayes theorem reads

P~$s%u$J(r )%,$t (r )%!;expS bJ

q (
( i j )

(
r 51

q21

Ji j
(r )s i

(r )s j
(q2r )

1
h

q (
i

(
r 51

q21

t i
(r )s j

(q2r )D Pd~s!,

~5!

wherePd(s) is a model of the prior distributionPs(j), that
is,

Pd~s![expS bd

q (
( i j )

(
r 51

q21

s i
(r )s j

(q2r )D . ~6!

Our choice of the above prior distribution~6! is due to the
assumption that in the real world, images should be locally
smooth. From this point of view, the distribution~6! is suit-
able because it gives a high probability if the nearest-
neighboring sites take the same value.

For the Ising model, in order to get the restored pixels out
of the average quantities, the pixel at sitei ~to be denoted as
S i) is naturally taken as the sign of the local magnetization.
This means that the restored pixel is chosen asS511 (S
521) if the spin points upward~downward! on average at
the equilibrium. For our model, instead, since the value of
the local magnetization is not simply confined to the interval
@21,1#, but runs all over the complex circle, we introduce
the generalized restored variable

S i~^s i&!5expF i (
a50

q21
2p

q
aJa~u i !G , ~7!

with

Ja~x!5QS x2
2p

q
a1

p

q D2QS x2
2p

q
a2

p

q D , ~8!

Q being the usual step function, and

u i5tan21S ^Re@s i #&

^Im @s i #&
D . ~9!

In simpler words,S i is the closest spin on the circle to the
value of the local magnetization ^s i&[^Re@s i #&
1 i ^Im@s i #&. Forq52, it is straightforward to check that Eq.
~7! reduces to a sign function up to a normalization constant.
The quantitieŝ Re@s i #& and ^Im@s i #& are the average over
the Boltzmann distributione2Heff with the following effec-
tive Hamiltonian@14#:
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Heff2
bJ
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( i j )

(
r 51

q21

Ji j
(r )~s i !

r~s j !
q2r

2
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q (
( i j )
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r 51
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(
r 51

q21

t i
(r )s j

q2r .

~10!

Condition ~4! gives the above Hamiltonian the same spin
gauge symmetry as Ising spin glass, thus suppressing the
spontaneous magnetization at low temperature which is
present in the usual random Potts model. For the restoration
purposes, the random field term aligns the spins according to
the corrupted picture, whereas the ferromagnetic term en-
sures the smoothness, by suppressing the isolated pixels
within one small cluster. Therefore, a balance betweenbd
and h will help us to reconstruct the original picture well.
The first term, instead, has been recently introduced in the
problem of image restoration by Nishimori and Wong@7#
and this term has been well known as theparity check codes
in the field of error-correcting codes. Obviously, this term
carries much more information about the original picture
than the other two terms. Therefore, the performance of the
image recovery is expected to be improved by this term. As
a measure of the restoration quality, we shall adopt the fol-
lowing overlapM:

M5F1

q (
r 50

q21

j i
q2rS i

r G
$j,J,t%

[
1

q (
r 50

q21

(
j

(
J

(
t

Pout~$J
(r )%,$t (r )%u$j%!P~j!j i

q2rS i
r ,

~11!

in which (1/q)( r 50
q21j i

q2rS i
r at each single site gives 1 if the

original spin is in the same state as the restored one, and 0
otherwise. Here the dependence on the local magnetization is
buried in the angleu i , given by Eq.~9!, and the sum over all
the sites is understood. The main goal of this paper is to
maximize the overlapM as a function of the temperatures
(bJ andbd) and the external fieldh ~referred to as an esti-
mate of thehyperparameters!. In the next section, we will
start with an exactly solvable model, that is, an infinite-range
version of the Potts spin glass.

III. MEAN FIELD SOLUTION

We will now investigate the performance of our model
within the mean field approximation; viz., each spin is influ-
enced by all the others. As the source image, we will con-
sider a ferromagnetic state generated by a Boltzmann distri-
bution at some finite temperatureTs . For the sake of
simplicity, we will restrict ourselves to the case ofq53,
although the results can be generalized to any value ofq. We
thus assume that the original set of pixels$j% is generated by
a ferromagnetic three-state Potts Hamiltonian with probabil-
ity

P~j!5
1

Zs~bs!
expF bs

2N (
i , j

~j ij j* 1j i* j j !G , ~12!

whereZs(bs) is a normalization constant andbs is the in-
verse source temperature. According to the conditional prob-
ability, the observables are computed as

@^ f &#$j,J,t%5(
j

(
J

(
t

P~$J(r )%,$t (r )%u$j%!

3P~j!
Trs f e2Heff

Z , ~13!

with

Z [ Trsexp~2Heff!. ~14!

It is rather straightforward to average out the disorder by
means of the well-known replica trick@16# and, assuming a
replica symmetry ansatz and isotropy~no dependence onr ),
the saddle point equations for the order parameters are given
by

@^s i
r&#[m5

1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~15!

@Re@j i #^s i
r&#[t15

1

Zs
(

j
Re@j#ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~16!

@ Im@j i #^s i
r&#[t25

1

Zs
(

j
Im@j#ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 Zcos~j!

Z~j!
, ~17!

@^s i
r&^s j

q2r&#[Q5
1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])

3E du

Ap

dv

Ap
e2u22v2 1

Z2~j!
@Zcos

2 ~j!

1Zsin
2 ~j!# . ~18!

Herems
(1) andms

(2) are simply the real and imaginary com-
ponents of the source magnetization, viz., the usual nonran-
dom Potts model@13# mean field equations

@Re@j i ##[ms
(1)5

1

Zs
~ebsms

(1)
2e2bsms

(1)/2

3cosh@~A3/2!bsms
(2)# !, ~19!

@ Im@j i ##[ms
(2)5

1

Zs
A3e2bsms

(1)/2
sinh@~A3/2!bsms

(2)#

~20!

and
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Zs5ebsms
(1)

12e2bsms
(1)/2

cosh@~A3/2!bsms
(2)#, ~21a!

Zcos~j!5eU(j)2e2U(j)/2coshV, ~21b!

Zsin~j!5A3e2U(j)/2 sinhV, ~21c!

Z~j!5eU(j)12e2U(j)/2coshV, ~21d!

with

U5uFbJ
2J2

q2
Q1t2h2G 1/2

1
bd

q
m1

bJJ0

q
@ t1Re@j#1t2Im@j##

1t0h Re@j#, ~22a!

V5
A3

2

bJJ

q
Q1/2v. ~22b!

Finally, the overlapM is expressed as the weighted average

M5
1

Zs
(

j
ebs(ms

(1)Re[j] 1ms
(2)Im[ j])E

S(j)

du

Ap

dv

Ap
e2u22v2

,

~23!

receiving contributions from the followingq53 regions in
the complex circle:

S~1!5H u,vU2 p

3
<tan21

Zsin

Zcos
<

p

3
ùZcos.0J , ~24a!

S~e2p i /3!5H u,vUS p

3
<tan21

Zsin

Zcos
<

p

2
ùZcos>0,Zsin.0D

øS 2
p

2
<tan21

Zsin

Zcos
<0ùZcos<0,Zsin>0D J ,

~24b!

S~e4p i /3!5H u,vUS p

2
<tan21

Zsin

Zcos
<2

p

3
ùZcos.0,Zsin>0D

øS 0<tan21
Zsin

Zcos
<

p

2
ùZcos,0,Zsin<0D J .

~24c!

We first assume that the exchange term is absent (bJ50)
@15#; that is, no redundancy is fed into the channel. In this
case, the saddle point equations~15!–~18! are drastically
simplified and the overlap~23! simply reads

M5
ebsms

Zs
ErfF2A2

bdm1t0h

th G
1

e21/2

Zs
H 12ErfF2A2

bdm2t0h

th G J , ~25!

with the magnetization given by

m5
ebsms

Zs
E du

Ap
e2u2

3
12exp@2 3

2 ~uth1bdm/q1t0h!#

112 exp@2 3
2 ~uth1bdm/q1t0h!#

1
2e2bsms/2

Zs
E du

Ap
e2u2

3
12exp@2 3

2 ~uth1bdm/q2t0h/2!#

112 exp@2 3
2 ~uth1bdm/q2t0h/2!#

, ~26!

where we defined Erf(x)[*x
`e2x2

dx/Ap.
The problem is thus reduced to a one-dimensional model,

corresponding to an Ising model in which the length of spin
turns out to be (11,21/2) instead of (11,21). This is not

FIG. 1. OverlapM as a function ofTd for different values ofh.
The maximum valueMmax does not depend onh. FIG. 2. OverlapMmax as a function of the exchange temperature

bJ for several values ofJ0. The overlap improves even for small
values of the exchange term.

2550 PRE 60DOMENICO M. CARLUCCI AND JUN-ICHI INOUE



surprising if one thinks that the fluctuations along the imagi-
nary axis are governed only by the glassy term; meanwhile,
the magnetic field acts along the real direction. In Fig. 1, we
plotted the overlapM as a function ofTd for the some values
of h. It is straightforward to check that the maximum value
of the overlapMmax does not depend on magnetic fieldh,
since at the stationary point (]M /]bd50) m is proportional
to the magnetic field

1

2
bsms5

1

3
mbd

t0

t2h
1

1

4

t0
2

t2
. ~27!

This feature holds also for the Ising case, although the sta-
tionary equation~27! is simpler:

bsms5mbd

t0

t2h
. ~28!

Expression~27! is thought to be valid only for the infinite-
range model, as confirmed in the next section by numerical
results ind52.

Now we set the decoding temperature at the optimal
value, that is,M (Td

opt)[Mmax, and we switch the exchange
interaction (bJÞ0) as depicted in Fig. 2. We notice that also
a small amount of redundancy highly improves the value of
the overlapMmax which quickly increases and slowly de-
creases, after the peak; meanwhile, the exchange term be-
comes dominant to the ferromagnetic one.

FIG. 3. Upper left: original three-gray-scale-level image. Upper
right: 15% of noise. Lower left: restoration without exchange term.
Lower right: restoration with exchange term
.

FIG. 4. OverlapM as a function of the decoding temperatureTd

at bJ50 ~left!. The system size is 64372 and each line is averaged
over four different samples.

FIG. 5. Overlap as a function ofbJ . We set the parameters
(H,Td)5(0.6,0.2) which gives the maximum in the absence of the
exchange term.

FIG. 6. Upper left: original three-gray-scale-level image. Upper
right: 30% of noise. Lower left: restoration without exchange term.
Lower right: restoration with exchange term.

PRE 60 2551IMAGE RESTORATION USING THE CHIRAL POTTS . . .



IV. MONTE CARLO SIMULATIONS
FOR REAL-WORLD PICTURES

Although for mere restoration aims it is not wise to
smoothen two points far away from each other, we shall see
that the infinite-range model provides a useful guide for the
more interesting case of real-world pictures, since the results
remain qualitatively similar. We thus carried out Monte
Carlo simulations for realistic pictures with a short-range ef-
fective Hamiltonian. In this case, the ferromagnetic term will
be concerned only with points within the range of interaction
and two points far away will not influence each other. It
would be extremely interesting to study the restoration qual-
ity as a function of the interaction radius, but this goes be-
yond the aim of the present work and we limit ourselves to a
first-nearest-neighbor interaction Hamiltonian. Therefore let
us consider a simpleq53 gray-scale-level picture~upper left

of Fig. 3!, where each pixel has been randomly flipped to
another value with some probability, say,p50.15 ~upper
right of Fig. 3!. The curves shown in Fig. 4 are the result of
the restoration process without the glassy term, that is,bJ
50, at different values of the ratioH5h/bd . Here the maxi-
mum value of the overlap is achieved aroundHmax[h/bd
;0.6 andTd;0.2 and the corresponding restored image is
drawn in the lower left of Fig. 3. Adding the glassy term at
Hmax fixed improves drastically the value of the overlap and
the quality of the restored image~lower right of Fig. 3!,
drawn at the peak of Fig. 5. The same procedure is repeated
in the presence of higher noise,p50.30, at the sameHmax
and bJ;max and the results of the restoration are shown in
Figs. 6. Finally, we applied the same algorithm to an eight-
gray-scale-level picture with 20% and 30% of noise, upper
images in Figs. 7 and 8. The results without exchange term

FIG. 7. Upper left: original eight-gray-scale-level image. Upper
right: 20% of noise. Lower left: restoration without exchange term.
Lower right: restoration with exchange term.

FIG. 8. Upper left: original eight-gray-scale-level image. Upper
right: 30% of noise. Lower left: restoration without exchange term.
Lower right: restoration with exchange term.

FIG. 9. OverlapM as a function of the decoding temperatureTd

at bJ50 ~left!. The system size is 933100 and each line is aver-
aged over four different samples.

FIG. 10. Overlap as a function ofbJ . We set the parameters
(H,Td)5(0.6,0.1) which gives the maximum in the absence of the
exchange term.
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are shown in shown Fig. 9. Once again we find a maximum
for some values ofTd andH and the corresponding restored
images are shown in Fig. 10.

V. CONCLUSIONS

In this paper, we investigated the possibility of gray-
scaled image restoration using the chiral random Potts
model. We solved exactly the infinite-range version, thus
deriving an explicit expression of the overlap as a function of
the estimates of the hyperparametersh, bd , andbJ . In the
absence of the glassy term, we obtained an exact relation
between the restoration temperaturebd and the source tem-
peraturebs which gives the maximum value of the overlap.
This seems a highly nontrivial result because it is natural for
us to assume that the best recovery of the image should be
achieved forbd5bs , as it turns out to be true for the Ising
case@7#. The Monte Carlo results on real pictures confirmed
the expected high improvement due to the presence of the
redundancy, i.e., the glassy term. However, so far, in our
prescription to recover a corrupted image at the best restora-
tion values, one is supposed to know the original data. In
other words, the receiver has to meet the sender at least once

to find the optimal restoration values. Only after that will the
other receivers be able to get an optimal restoration for the
same image, provided that the channels remain, at least
qualitatively, unchanged. In this sense, it would be extremely
useful to provide somea priori criteria ~the receiver will not
be supposed to meet the sender! for the optimum values of
the hyperparameters, once that some intrinsic characteristics
~e.g., temperature! of the original image are known. There-
fore, in order to check if relation~27! still holds down to two
dimensions, we restoredq53 ferromagnetic snapshots gen-
erated at some known temperature. However, so far we have
not yet obtained reliable results and detailed investigations in
this direction will be reported in a forthcoming paper.
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