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The Kepler equation for inspiralling compact binaries
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Compact binaries consisting of neutron stars / black holes on eccentric orbit undergo a perturbed
Keplerian motion. The perturbations are either of relativistic origin or are related to the spin, mass

quadrupole and magnetic dipole moments of the binary components. The post-Newtonian motion of
such systems decouples into radial and angular parts. We present here for the first time the radial
motion of such a binary encoded in a generalized Kepler equation, with the inclusion of all above-
mentioned contributions, up to linear order in the perturbations. Together with suitably introduced
parametrizations, the radial motion is solved completely.

I. INTRODUCTION

The worldwide effort to capture gravitational wave sig-
nals emitted by astrophysical sources is under way. A
network of interferometric gravitational wave detectors
[1]-[4] is either already operational, or close to comple-
tion. Compact binaries consisting on neutron stars /
black holes are among the best candidates to emit grav-
itational radiation in the bandwidth of these detectors.
Upper limits on the gravitational radiation emitted by
such binaries were already found [5], [6] from the S2 sci-
entific run of LIGO.

The evolution of such a binary system can be divided
into three phases: inspiral, merger and ringdown. The
merger phase can be understood only by numeric simu-
lations. Even in the last part of the inspiral a numerical
treatment seems adequate due to the intermediate bi-
nary black hole (IBBH) problem [7], studied also in [8].
Earlier, in the inspiral phase a post-Newtonian (PN) de-
scription of high accuracy provides satisfactory results.
The PN corrections of relativistic nature are known to
3PN orders [9]. However there are other contributions to
be taken into account, related to various physical char-
acteristics of the binary components as well.

For compact binaries, there is the spin-orbit (SO) in-
teraction appearing at 1.5 PN orders. At this accuracy
both the spin vectors Si and the orbital angular momen-
tum L undergo a precessional motion about the total
angular momentum J [10]. This is a novel feature in the
post-Newtonian evolution of the system. Such an effect
was recently claimed [11] to be observable for the J0737-
3039A/B double pulsar [12], [13].

The precessional motion of the spin(s) is called simple

precession, whenever the two masses are equal, or one of
the spins can be neglected, say S2 = 0 [14]. These two
cases were studied in [15], where among other results,
the Kepler equation was derived up to 3PN orders with
the inclusion of the SO contributions. As a related re-
sult, the evolution of the relativistic periastron advance
parameter was recently computed [16]. The tilt angle of
the spin with respect to L was estimated to be smaller
than ≃ 60◦ from generic astrophysical considerations on
the evolution of compact binaries [17].

The SO interaction gives corrections to the losses of en-

ergy and magnitude of angular momentum of the system
occurring due to gravitational radiation. For eccentric
orbits these were given by [18] and [19]. An other work
relying on the use of the Effective One-Body approach
[20], [21], has employed the SO contribution in the study
of the inspiral to plunge phase of the coalescence [22].

Moreover, in the two cases of simple precession de-
tection template families have been worked out both
containing a set of phenomenological parameters [23] or
physical parameters [24]. The latter would allow for de-
termining the angle κ1 and the magnitude of the single
spin (in fact of χ = S1/m

2

1
) from the study of gravita-

tional radiation.
At 2PN an other set of new effects related to various

physical characteristics of the compact binary emerge.
The losses of energy and magnitude of angular momen-
tum of the system on eccentric orbit, due to gravitational
radiation were derived in [25] for the spin-spin interac-
tion, in [26] for the mass quadrupole-monopole interac-
tion and in [27] for the interaction of magnetic dipoles.

Thus at 2PN physical quantities like the mass
quadrupole and magnetic dipole moments, as well as an-
gular variables characterizing the spins and moments ap-
pear in the formalism. Neither detection templates, nor
methods to find out these new physical parameters have
been worked out so far. We note that in principle, the
observation of the evolution of gravitational wave fre-
quency [28] allows to impose constraints on a combina-

tion of these parameters, but does not allow to predict
their individual values. There is still much to do until
a complete understanding of the complicated motion the
system, occurring when all these interactions are taken
into account, will be achieved. Our present work fills
an important gap in the description of compact binaries
with the enlisted physical characteristics.

In Section 2 we describe the post-Newtonian motion
of such a binary system. The radial part of the motion
decouples and defines a radial orbit. We give the generic
expressions of the turning points of the radial motion
which allows for the introduction of the semimajor axis
ar and radial eccentricity er. We define the generalized
true anomaly χ and eccentric anomaly ξ parameters. Our
generalized true anomaly parameter is different from the
one employed in the Damour-Deruelle formalism and we
establish their relation. In Section 3 we derive the main
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result of the paper, which is the generalized Kepler equa-
tion

n (t− t0) = ξ − et sin ξ

+ft sin
[

χ+ 2
(

ψ0 − ψ
)]

+

2
∑

i=1

f i
t sin [χ+ 2 (ψ0 − ψi)] . (1)

The explicit expressions of the orbital elements n, et, ft

and f i
t are given in Section 4, together with all contribu-

tions to ar and er. They contain the relativistic contri-
butions (PN-terms), together with the SO, SS, DD and
QM terms, all to linear order. One of the consequences of
taking into account the physical characteristics of the bi-
nary, like the spins, mass quadrupole and magnetic dipole
moments is the emergence of novel angle variables in the
Kepler equation (1). The angles ψi are the azimuthal
angles of the spins and 2ψ = ψ1 + ψ2. (For more details
on the notations see [19].) The angle ψ0 is the argument
of the periastron (defined here as the angle subtended
by the periastron and the intersection line of the planes
perpendicular to the total and orbital angular momenta,
respectively).

We emphasize that in the description of the SO interac-
tion several spin-supplementary conditions (SSC) can be
used. In order to simplify the formalism, in this paper
we use the non-covariant SSC of Pryce [29] and New-
ton and Wigner [30]. In this SSC the Lagrangian is not
acceleration-dependent and the radial equation is simpler
than in the covariant SSC [29] employed earlier in [19].

II. GENERALIZED TRUE AND ECCENTRIC

ANOMALY PARAMETRIZATIONS

The linear contributions to the motion of the compact
binary can be collected in the Lagrangian

L = LN + LPN + LSO + LSS + LQM + LDD , (2)

with the various contributions derived first in [31] (PN),
[32] (SS), [33] (QM) and [34] (DD):

LN =
µv2

2
+
Gmµ

r
,

LPN =
1

8c2
(1 − 3η)µv4 +

Gmµ

2rc2

[

(3+η)v2+ηṙ2−
Gm

r

]

,

LSO =
Gµ

2c2r3
v · [r × (4S + 3σ)] ,

LSS =
G

c2r3

[

(S1 · S2) −
3

r2
(r · S1) (r · S2)

]

,

LQM =
Gµm3

2r5

2
∑

i=1

pi

[

3
(

Ŝi · r

)2

− r2
]

,

LDD =
1

r3
[3(n · d1)(n · d2) − d1 · d2] . (3)

Note that the SO-part of the Lagrangian above was not
given before and it is valid when the spin-supplementary
condition (SSC) of Pryce [29] and Newton and Wigner
[30] is chosen. We have verified that the SO-part of the
acceleration derived from LSO agrees with the expres-
sion (A1b) of [35]. The magnitude and direction of the

spins are denoted as Si and Ŝi. The angle subtended
by them is γ = cos−1(Ŝ1 · Ŝ2). Here S = S1 + S2

and σ =(m2/m1)S1 + (m1/m2)S2. The magnitude
and direction of the magnetic dipole moments di are
denoted as di and d̂i. They subtend the angle λ =
cos−1(d̂1 · d̂2) with each other. In a coordinate systems

K with the axes (ĉ, L̂ × ĉ, L̂), where ĉ is the unit vector
in the J × L direction, the polar angles κi and ψi of the
spins are defined as Ŝi =(sinκi cosψi, sinκi sinψi, cosκi)
(see [19]). In the coordinate system Ki with the

axes (b̂i, Ŝi × b̂i, Ŝi), where b̂i are the unit vectors
in the Si × L directions, respectively, the polar angles
αi and βi of the the magnetic dipole moments di are
d̂i =(sinαi cosβi, sinαi sinβi, cosαi) (see [27]). The
quadrupolar parameters (see [26]) are defined as pi =
Qi/mim

2, whereQi is the quadrupole-moment scalar [33]
of the ith axially symmetric binary component with sym-
metry axis Ŝi. The reduced mass is µ = m1m2/m and
η = µ/m.

From (3) a radial equation can be derived

ṙ2 =
2E

µ
+

2Gm

r
−

L
2

µ2r2
+

3
∑

i=0

δAi

ri
−

2LδL

µ2r2
−

2δE

µ
. (4)

Here L = (1/2π)
∫

2π

0
L(χ)dχ is the angular average of the

magnitude of orbital angular momentum L(χ), χ being
the true anomaly parameter. The explicit values of L in
the case of spin-spin, quadrupole-monopole and magnetic
dipole-dipole interactions were computed in [25], [26] and
[27]. A is the magnitude of the Laplace-Runge-Lenz vec-
tor characterizing a Keplerian motion with E and L. The
coefficients δAi in Eq. (4) are constant PN perturbations
given in the Table I, which can be read from [31]. The

TABLE I: Various post-Newtonian constants in δAi.

δA0 3(3η − 1) E2

c2µ2

δA1 2(7η − 6)EGm

c2µ

δA2 −2(3η − 1) EL
2

c2µ3 + (5η − 10)G2m2

c2

δA3 (−3η + 8)G2m2L
2

c2µ2

SO, SS, QM and DD contributions to δL and δE are en-
listed in the Tables II and III. The shorthand notations
αDD and βDD(2χ) are defined in Eq. (6).

In [36] a generic scheme was introduced for parametriz-
ing such perturbed Keplerian motions. The advantage of
the generalized eccentric anomaly parametrization and
generalized true anomaly parametrization is that a sim-
ple technique based on the residue theorem can be ap-
plied for computing secular effects [36]. The scheme was
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TABLE II: Various contributions to δL.

SO GµL

2c2r

2
∑

i=1,j 6=i

4mi+3mj

mi
Si cos κi

SS −

Gµ2

2c2L
3S1S2 sin κ1 sin κ2

{

2A cos
[

χ+ 2
(

ψ0 − ψ
)]

+
(

3Gmµ+ 2A cosχ
)

cos 2
(

χ+ ψ0 − ψ
)}

QM Gµ3m3

4L
3

∑2
i=1 pi sin2 κi

{

2A cos [χ+ 2 (ψ0 − ψi)]

+
(

3Gmµ+ 2A cosχ
)

cos 2 (χ+ ψ0 − ψi)
}

DD µ2d1d2

2L
3

[

(3Gmµ+4A cosχ)βDD(2χ)−A sinχ dβDD(2χ)
dχ

]

TABLE III: Various contributions to δE.

SO no contribution

SS −

GS1S2

2c2r3

{

3 cosκ1 cos κ2 − cos γ

−3 sin κ1 sin κ2 cos 2
(

χ+ ψ0 − ψ
)}

QM Gµm3

2r3

∑2
i=1 pi

[

1 −3sin2κi cos2(χ+ δi)
]

DD d1d2

2r3 [αDD − 3βDD (2χ)]

applied individually for each of the SO, SS, QM, DD per-
turbations in [19], [25], [26] and [27], respectively. It is
straightforward to derive the PN contribution to these
parametrizations. We give here in a concise form both
parametrizations, with the inclusion of the PN contri-
bution as well. Both are defined in terms of the turning
points rmin and rmax of the radial motion, given by ṙ = 0:

rmax
min

=
Gmµ±A

−2E
+δrPN

max

min

+δrSO
max

min

+δrSS
max

min

+δrQM
max

min

+δrDD
max

min

,

δrPN
max
min

= (η − 7)
Gm

4c2
± (η + 9)

G2m2µ

8Ac2
∓ (3η − 1)

A

8µc2
,

δrSO
max
min

= −
Gµ

2c2LA
(A∓Gmµ)

2
∑

i=1,j 6=i

4mi + 3mj

mi
Si cosκi ,

δrSS
max

min

= −
GµS1S2

2c2L
2

A

[

(A∓Gmµ)αSS +AβSS

]

,

δrQM
max
min

=
Gµ2m3

4L
2

A

2
∑

i=1

pi

[

(A∓Gmµ)αi
QM +Aβi

QM

]

,

δrDD
max
min

=
µd1d2

2L
2

A

{

(A∓Gmµ)αDD +AβDD

}

. (5)

We have introduced the shorthand notations

αSS = 3 cosκ1 cosκ2 − cos γ ,

βSS = sinκ1 sinκ2 cos 2
(

ψ0 − ψ
)

,

αi
QM = 2 − 3 sin2 κi ,

βi
QM = sin2 κi cos 2 (ψ0 − ψi) ,

αDD = 2 cosλ+ 3(ρ1σ2 − ρ2σ1) sin ∆ψ

−3(ρ1ρ2 + σ1σ2) cos∆ψ ,

βDD(kχ) = (σ1σ2 − ρ1ρ2) cos
[

kχ+ 2
(

ψ0 − ψ
)]

−(ρ1σ2 + ρ2σ1) sin
[

kχ+ 2
(

ψ0 − ψ
)]

,

βDD = βDD(0) , (6)

where

ρi = sinαi cosβi ,

σi = cosαi sinκi + sinαi sinβi cosκi . (7)

The generalized eccentric anomaly parametrization r (ξ)
is then defined as

r (ξ) = ar (1 − er cos ξ) . (8)

The eccentric anomaly ξ reduces to the eccentric anomaly
parameter u of [31] for 1PN perturbations. In Eq. (8)
the semimajor axis ar and the radial eccentricity er was
introduced as

ar =
rmax + rmin

2
, (9)

er =
rmax − rmin

rmax + rmin

. (10)

The generalized true anomaly parametrization is defined
as:

2

r (χ)
=

(

1

rmin

+
1

rmax

)

+

(

1

rmin

−
1

rmax

)

cosχ . (11)

These two parametrizations of the radial motion are in-
terrelated by the Keplerian relations

tan
ξ

2
=

√

1 − er

1 + er
tan

χ

2
, (12)

sin ξ =

√

1 − e2r sinχ

1 + er cosχ
, (13)

with er in place of the Keplerian eccentricity. Note that
in the Damour-Deruelle formalism [31], a different gener-
alized true anomaly parameter v is introduced. To 1PN
accuracy v is related to χ as

tan
χ

2
=

[

1−
Gmµ

4c2L
2

A

(

G2mµ3+
12EL

2

µ

)]

tan
v

2
. (14)

When using the generalized true anomaly parameter v,
the equation ξ (v) replacing Eq. (12) will contain the
angular eccentricity eθ rather than er.

III. GENERALIZED KEPLER EQUATION

The first three terms on the right hand side in the
radial equation (4) sum up to:

2E

µ
+

2Gm

r
−

L
2

µ2r2

=

(

A

L
2
+

2δQ

µ

)

A sin2 χ−
2A

µ
(δQ+δP cosχ) , (15)

where δP and δQ are perturbation terms depending on
the physical parameters of the binary and they are given
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TABLE IV: Various contributions to δP .

PN −

Gmµ2

c2L
4

[

A
2
(η − 2) − 4G2m2µ2

]

SO −

Gµ3

2c2L
5

2
∑

i=1,j 6=i

4mi+3mj

mi
Si cosκi

(

A
2
+3G2m2µ2

)

SS Gµ3S1S2

2c2L
6

[

αSS

(

A
2
+3G2m2µ2

)

+βSS

(

A
2
+G2m2µ2

)]

QM−

Gm3µ4

4L
6

∑2
i=1 pi

[

αi
QM

(

A
2

+ 3G2m2µ2
)

+βi
QM

(

A
2

+G2m2µ2
)

]

DD −

µ3d1d2

2L
6

[

αDD

(

A
2
+3G2m2µ2

)

+βDD

(

A
2
+G2m2µ2

)]

TABLE V: Various contributions to δQ.

PN −

µ

8c2L
4
A

[

2G2m2µ2A
2
(3η − 19)

−G4m4µ4(η + 9) +A
4
(3η − 1)

]

SO −

G2mµ4

2c2L
5
A

2
∑

i=1,j 6=i

4mi+3mj

mi
Si cosκi

(

3A
2
+G2m2µ2

)

SS G2mµ4S1S2

2c2L
6
A

[

αSS

(

3A
2

+G2m2µ2
)

+ 2βQMA
2
]

QM −

G2m4µ5

4L
6
A

∑2
i=1 pi

[

αi
QM

(

3A
2

+G2m2µ2
)

+ 2βi
SSA

2
]

DD −

Gmµ4d1d2

2L
6
A

[

αDD

(

3A
2

+G2m2µ2
)

+ 2βDDA
2
]

in the Tables IV and V. The parametrization (11) has
the advantageous property

dr

dχ
=

1

2

(

1

rmin

−
1

rmax

)

r2 sinχ . (16)

Employing Eqs. (11) and (16) into the radial equation
(4), then taking the square root and forming the recipro-
cal, after a series expansion to first order in the pertur-
bations we find

dt

dχ
=

µr2

L

{

1 +
L

2

2µ2r2A
2

sin2 χ

[

r2µA(δQ+δP cosχ)

+2
(

LδL+r2µδE
)

+

3
∑

i=0

δAir
2−i

]

}

, (17)

The integration of this equation is the main purpose of
our paper.

Apparently Eq. (17) becomes singular at χ = kπ,
k ∈ Z, because of the sin2 χ term in the denominator.
Such singularities could be just apparent, as was shown
for the SO-contribution in [36], We have verified that
after forming the common denominator in the bracket,
and inserting the detailed expressions of δP , δQ, δL and
δE, given in Tables II-V, the numerator becomes pro-
portional to sin2 χ. Therefore the singularities are just
apparent rather than real for all type of contributions
considered here. Thus we obtain

dt

dχ
=

µr2

L
+

(

dt

dχ

)

PN

+

(

dt

dχ

)

SO

+

(

dt

dχ

)

SS

+

(

dt

dχ

)

DD

+

(

dt

dχ

)

QM

,

(

dt

dχ

)

PN

=
µr2

2c2L
3

{

(η − 13)G2m2µ2 + (3η − 1)A
2

+ (3η − 8)GmµA cosχ

}

,

(

dt

dχ

)

SO

= −
Gµ2r2

2c2L
3

(

3Gmµ+A cosχ
)

2
∑

i=1,j 6=i

4mi + 3mj

mi
Si cosκi ,

(

dt

dχ

)

SS

=
Gµ3S1S2r

2

2c2L
5

{

[

Gmµ (3αSS + 2βSS) +A (αSS + βSS) cosχ
]

−
2L

4

µ2r2A
sinκ1 sinκ2 cos

[

χ+ 2
(

ψ0 − ψ
)]

}

,

(

dt

dχ

)

QM

= −
Gm3µ4r2

4L
5

2
∑

i=1

pi

{

[

Gmµ
(

3αi
QM +2βi

QM

)

+A
(

αi
QM +βi

QM

)

cosχ
]

−
2L

4

µ2r2A
sin2κi cos[χ+ 2 (ψ0−ψi)]

}

,

(

dt

dχ

)

DD

= −
µ3d1d2r

2

2L
5

{

[

Gmµ (3αDD + 2βDD) +A (αDD + βDD) cosχ
]

+
2L

4

µ2r2A
cos
[

χ+ 2
(

ψ0 − ψ
)]

}

. (18)

These expressions are regular for any χ.

By integrating Eq. (18) and employing the relation
(12) between the two parametrizations we obtain the gen-
eralized Kepler equation (1). This is the main result of

the paper.
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IV. THE ORBITAL PARAMETERS

In this Section we enlist the detailed expressions of
the orbital parameters appearing either in the eccentric
anomaly parametrization (8) or in the generalized Kepler
equation (1).

The semimajor axis is

ar =
Gmµ

−2E
+ aPN

r + aSO
r + aSS

r + aQM
r + aDD

r ,

aPN
r =

Gm

4c2
(η − 7) ,

aSO
r =

Gµ

2c2L

2
∑

i=1,j 6=i

4mi + 3mj

mi
Si cosκi ,

aSS
r = −

GµS1S2

2c2L
2

(αSS + βSS) ,

aQM
r =

Gm3µ2

4L
2

2
∑

i=1

pi

(

αi
QM + βi

QM

)

,

aDD
r =

µd1d2

2L
2

(αDD + βDD) . (19)

The radial eccentricity is

er =
A

Gmµ
+ ePN

r + eSO
r + eSS

r + eQM
r + eDD

r ,

ePN
r =

E

4c2Gmµ2A

[

(5η − 15)A
2

− (η + 9)G2m2µ2

]

,

eSO
r =

E
(

G2m2µ2+A
2
)

c2Gm2µLA

2
∑

i=1,j 6=i

4mi + 3mj

mi
Si cosκi ,

eSS
r = −

ES1S2

c2Gm2µL
2

A

[(

G2m2µ2 +A
2
)

αSS +A
2

βSS

]

,

eQM
r =

Em

2GL
2

A

2
∑

i=1

pi

[(

G2m2µ2 +A
2
)

αi
QM +A

2

βi
QM

]

,

eDD
r =

Ed1d2

GmµL
2

A

[(

G2m2µ2 +A
2
)

αDD +A
2

βDD

]

. (20)

The mean motion is

n =
2π

T
=

1

Gm

(

−2E

µ

)3/2 [

1 − (η − 15)
E

4c2µ

]

. (21)

The time eccentricity is

et =
A

Gmµ
+ ePN

t + eSO
t + eSS

t + eQM
t + eDD

t ,

ePN
t = −

E

4c2Gmµ2A

[

(7η − 17)A
2

+ (η + 9)G2m2µ2

]

,

eSO
t =

EGµ

c2LA

2
∑

i=1,j 6=i

4mi + 3mj

mi
Si cosκi ,

eSS
t = −

ES1S2GµαSS

c2L
2

A
,

eQM
t =

EGm3µ2

2L
2

A

2
∑

i=1

piα
i
QM ,

eDD
t =

Eµd1d2

L
2

A
αDD . (22)

In what follows, we enlist the parameters ft and f i
t ,

the analogues of which also appear in the extension to
2PN [37] of the Damour-Deruelle parametrization, how-
ever have no PN counterpart. The parameter ft receives
only SS and DD type contributions

ft = fSS
t + fDD

t ,

fSS
t = −

(

−2E

µ

)3/2
µS1S2

c2mAL
sinκ1 sinκ2 ,

fDD
t =

(

−2E

µ

)3/2
µd1d2

GmAL
. (23)

Finally the parameters f i
t , originating from the QM in-

teraction, are given as

f i
t =

(

−2E

µ

)3/2
m2µ2

2AL
pi sin2 κi . (24)

V. CONCLUDING REMARKS

The generalized Kepler equation (1) with the or-
bital parameters (19)-(24), together with any of the
parametrizations (8) or (11) and their relation (12) rep-
resent the complete solution of the radial motion of the

compact binary on eccentric orbit, to linear order in the

perturbations. All perturbations arising from relativis-
tic corrections and from the presence of spins, mass
quadrupole and magnetic dipole moments are included
here to linear order (PN, SO, SS, QM, DD contributions).

The generalized Kepler equation contains two parame-
ters, the generalized eccentric anomaly ξ (this is defined
similarly as the parameter u in [31, 37] and the general-
ized true anomaly χ (different from the parameter v of
[31, 37], their relation being given to 1PN accuracy by
Eq. (14)).

The generalization of the relation (14) to 2PN accu-
racy would imply to give the χ−parametrization (11) to
2PN, however by the method described in [36] r (χ) can
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be defined only to linear order in the perturbations. Nev-
ertheless, the linear contributions to the Kepler equation
included in the present paper (containing the parame-
ters ξ and χ), and the 2PN contributions [37] (containing
u ≡ ξ and v) can be simply summed up, at the price of
having all three parameters (ξ ≡ u, χ and v) present in
the formalism. Notably at 2PN orders a new parameter,
gt is also present [38]. We note here that the 3PN contri-
bution to the Kepler equation is also known [15], however
the contribution of the first PN correction of the SO in-
teraction, arising at 2.5 PN is not. Therefore we conclude
that for the moment, the radial motion is solved only to
2PN orders accuracy.

In contrast with the PN and 2PN Kepler equations, our
Eq. (1) contains the additional angles ψ0 and ψi. During
one radial period these can be considered constants [19].
On the long run however, all these angles slowly vary
as the orbit and the spins undergo precessional motions.
In order to describe the slow evolution of these angles,
the study of the angular part of the motion (as opposed
to the radial one) is necessary, with the inclusion of all
perturbations, to linear order. This is available for the
PN perturbation [31] and SO perturbation [15], however

the latter holds only for special cases (equal masses or
a single spin). A systematic investigation of the angular
part of the perturbed Keplerian motion is under way [39].

We remark that the circular orbit limit of our formu-
lae should not be taken as A → 0. This is because the
standard interpretation of the Laplace-Runge-Lenz vec-
tor holds only in the Newtonian limit. In the circular
orbit limit all corrections considered here add nonvanish-
ing contributions to A.

Our generic Kepler equation (1) and the orbital el-
ements (19)-(24) correctly reproduce the PN contribu-
tions [31] and the SO contributions [15]. However all of
the other contributions are new.
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