1,549 research outputs found

    Live Imaging of Type I Collagen Assembly Dynamics in Osteoblasts Stably Expressing GFP and mCherry-Tagged Collagen Constructs

    Get PDF
    Type I collagen is the most abundant extracellular matrix protein in bone and other connective tissues and plays key roles in normal and pathological bone formation as well as in connective tissue disorders and fibrosis. Although much is known about the collagen biosynthetic pathway and its regulatory steps, the mechanisms by which it is assembled extracellularly are less clear. We have generated GFPtpz and mCherry-tagged collagen fusion constructs for live imaging of type I collagen assembly by replacing the α2(I)-procollagen N-terminal propeptide with GFPtpz or mCherry. These novel imaging probes were stably transfected into MLO-A5 osteoblast-like cells and fibronectin-null mouse embryonic fibroblasts (FN-null-MEFs) and used for imaging type I collagen assembly dynamics and its dependence on fibronectin. Both fusion proteins co-precipitated with α1(I)-collagen and remained intracellular without ascorbate but were assembled into α1(I) collagen-containing extracellular fibrils in the presence of ascorbate. Immunogold-EM confirmed their ultrastuctural localization in banded collagen fibrils. Live cell imaging in stably transfected MLO-A5 cells revealed the highly dynamic nature of collagen assembly and showed that during assembly the fibril networks are continually stretched and contracted due to the underlying cell motion. We also observed that cell-generated forces can physically reshape the collagen fibrils. Using co-cultures of mCherry- and GFPtpz-collagen expressing cells, we show that multiple cells contribute collagen to form collagen fiber bundles. Immuno-EM further showed that individual collagen fibrils can receive contributions of collagen from more than one cell. Live cell imaging in FN-null-MEFs expressing GFPtpz-collagen showed that collagen assembly was both dependent upon and dynamically integrated with fibronectin assembly. These GFP-collagen fusion constructs provide a powerful tool for imaging collagen in living cells and have revealed novel and fundamental insights into the dynamic mechanisms for the extracellular assembly of collagen

    Dependence in Prestroke Mobility Predicts Adverse Outcomes Among Patients With Acute Ischemic Stroke

    Get PDF
    Background and Purpose - Stroke survivors are commonly dependent in activities of daily living; however, the relation between prestroke mobility impairment and poststroke outcomes is poorly understood. The primary objective of this study was to evaluate the association between prestroke mobility impairment and 4 poststroke outcomes. The secondary objective was to evaluate the association between prestroke mobility impairment and a plan for physical therapy. Methods - This was a secondary analysis of the National Stroke Project data, a retrospective cohort of Medicare beneficiaries who were hospitalized with an acute ischemic stroke (1998 to 2001). Logistic-regression modeling was used to examine the adjusted association between prestroke mobility impairment with patient outcomes and a plan for physical therapy. Results - Among the 67 445 patients hospitalized with an ischemic stroke, 6% were dependent in prestroke mobility. Prestroke mobility dependence was independently associated with an increased odds of poststroke mobility impairment (odds ratio [OR]=9.9; 95% CI, 9.0 to 10.8); in-hospital mortality (OR=2.4; 95% CI, 2.2 to 2.7); discharge to a skilled nursing facility (OR=3.5; 95% CI, 3.2 to 3.8); and the combination of in-hospital death or discharge to a skilled nursing facility (OR=3.5; 95% CI, 3.3 to 3.8). Prestroke mobility dependence was independently associated with a decreased odds of having a plan for physical therapy (OR=0.79; 95% CI, 0.73 to 0.85). Conclusions - These data, obtained from a large, geographically diverse cohort from the United States, demonstrate a strong association between dependence in prestroke mobility and adverse outcomes among elderly stroke patients. Clinicians should screen patients for prestroke mobility impairment to identify patients at greatest risk for adverse events

    Degeneration of the osteocyte network in the C57BL/6 mouse model of aging

    Get PDF
    Age-related bone loss and associated fracture risk are major problems in musculoskeletal health. Osteocytes have emerged as key regulators of bone mass and as a therapeutic target for preventing bone loss. As aging is associated with changes in the osteocyte lacunocanalicular system, we focused on the responsible cellular mechanisms in osteocytes. Bone phenotypic analysis was performed in young-(5mo) and aged-(22mo) C57BL/6 mice and changes in bone structure/geometry correlated with alterations in osteocyte parameters determined using novel multiplexed-3D-confocal imaging techniques. Age-related bone changes analogous to those in humans were observed, including increased cortical diameter, decreased cortical thickness, reduced trabecular BV/TV and cortical porosities. This was associated with a dramatic reduction in osteocyte dendrite number and cell density, particularly in females, where osteocyte dendricity decreased linearly from 5, 12, 18 to 22mo and correlated significantly with cortical bone parameters. Reduced dendricity preceded decreased osteocyte number, suggesting dendrite loss may trigger loss of viability. Age-related degeneration of osteocyte networks may impair bone anabolic responses to loading and gender differences in osteocyte cell body and lacunar fluid volumes we observed in aged mice may lead to gender-related differences in mechanosensitivity. Therapies to preserve osteocyte dendricity and viability may be beneficial for bone health in aging

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    Carbon isotope evidence for the substrates and mechanisms of prebiotic synthesis in the early solar system

    Get PDF
    Meteorites contain prebiotic, bio-relevant organic compounds including amino acids. Their syntheses could result from diverse sources and mechanisms and provide a window on the conditions and materials present in the early solar system. Here we constrain alanine’s synthetic history in the Murchison meteorite using site-specific ¹³C/¹²C measurements, reported relative to the VPDB standard. The δ¹³C_(VPDB) values of −29 ± 10‰, 142 ± 20‰, and −36 ± 20‰ for the carboxyl, amine-bound, and methyl carbons, respectively, are consistent with Strecker synthesis of interstellar-medium-derived aldehydes, ammonia, and low-δ¹³C nebular or interstellar-medium-derived CN. We report experimentally measured isotope effects associated with Strecker synthesis, and use them to constrain the δ¹³C values of the alanine precursors, which we then use to construct a model that predicts the molecular-average δ¹³C values of 19 other organic compounds of prebiotic significance found in Murchison if they were made by our proposed synthetic network. Most of these predictions agree with previous measurements, suggesting that interstellar-medium-derived aldehydes and nebular and/or pre-solar CN could have served as substrates for synthesis of a wide range of prebiotic compounds in the early solar system

    The relative importance of local and regional processes to metapopulation dynamics

    Get PDF
    Metapopulation dynamics - patch occupancy, colonization and extinction - are the result of complex processes at both local (e.g. environmental conditions) and regional (e.g. spatial arrangement of habitat patches) scales. A large body of work has focused on habitat patch area and connectivity (area-isolation paradigm). However, these approaches often do not incorporate local environmental conditions or fully address how the spatial arrangement of habitat patches (and resulting connectivity) can influence metapopulation dynamics. Here, we utilize long-term data on a classic metapopulation system - the Glanville fritillary butterfly occupying a set of dry meadows and pastures in the angstrom land islands - to investigate the relative roles of local environmental conditions, geographic space and connectivity in capturing patch occupancy, colonization and extinction. We defined connectivity using traditional measures as well as graph-theoretic measures of centrality. Using boosted regression tree models, we find roughly comparable model performance among models trained on environmental conditions, geographic space or patch centrality. In models containing all of the covariates, we find strong and consistent evidence for the roles of resource abundance, longitude and centrality (i.e. connectivity) in predicting habitat patch occupancy and colonization, while patch centrality (connectivity) was relatively unimportant for predicting extinction. Relative variable importance did not change when geographic coordinates were not considered and models underwent spatially stratified cross-validation. Together, this suggests that the combination of regional-scale connectivity measures and local-scale environmental conditions is important for predicting metapopulation dynamics and that a stronger integration of ideas from network theory may provide insight into metapopulation processes.Peer reviewe

    Fibrillin-1 regulates the bioavailability of TGFβ1

    Get PDF
    We have discovered that fibrillin-1, which forms extracellular microfibrils, can regulate the bioavailability of transforming growth factor (TGF) β1, a powerful cytokine that modulates cell survival and phenotype. Altered TGFβ signaling is a major contributor to the pathology of Marfan syndrome (MFS) and related diseases. In the presence of cell layer extracellular matrix, a fibrillin-1 sequence encoded by exons 44–49 releases endogenous TGFβ1, thereby stimulating TGFβ receptor–mediated Smad2 signaling. This altered TGFβ1 bioavailability does not require intact cells, proteolysis, or the altered expression of TGFβ1 or its receptors. Mass spectrometry revealed that a fibrillin-1 fragment containing the TGFβ1-releasing sequence specifically associates with full-length fibrillin-1 in cell layers. Solid-phase and BIAcore binding studies showed that this fragment interacts strongly and specifically with N-terminal fibrillin-1, thereby inhibiting the association of C-terminal latent TGFβ-binding protein 1 (a component of the large latent complex [LLC]) with N-terminal fibrillin-1. By releasing LLC from microfibrils, the fibrillin-1 sequence encoded by exons 44–49 can contribute to MFS and related diseases

    Cannabidiol modulates phosphorylated rpS6 signalling in a zebrafish model of tuberous sclerosis complex

    Get PDF
    Tuberous sclerosis complex (TSC) is a rare disease caused by mutations in the TSC1 or TSC2 genes and is characterized by widespread tumour growth, intractable epilepsy, cognitive deficits and autistic behaviour. CBD has been reported to decrease seizures and inhibit tumour cell progression, therefore we sought to determine the influence of CBD on TSC pathology in zebrafish carrying a nonsense mutation in the tsc2 gene. CBD treatment from 6 to 7 days post-fertilization (dpf) induced significant anxiolytic actions without causing sedation. Furthermore, CBD treatment from 3 dpf had no impact on tsc2-/- larvae motility nor their survival. CBD treatment did, however, reduce the number of phosphorylated rpS6 positive cells, and their cross-sectional cell size. This suggests a CBD mediated suppression of mechanistic target of rapamycin (mTOR) activity in the tsc2-/- larval brain. Taken together, these data suggest that CBD selectively modulates levels of phosphorylated rpS6 in the brain and additionally provides an anxiolytic effect. This is pertinent given the alterations in mTOR signalling in experimental models of TSC. Additional work is necessary to identify upstream signal modulation and to further justify the use of CBD as a possible therapeutic strategy to manage TSC
    • …
    corecore