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Abstract1

1. Metapopulation dynamics – patch occupancy, colonization, and extinction2

– are the result of complex processes at both local (e.g., environmental3

conditions) and regional (e.g., spatial arrangement of habitat patches) scales.4

A large body of work has focused on habitat patch area and connectivity5

(area-isolation paradigm). However, these approaches often do not incorporate6

local environmental conditions, or fully address how the spatial arrangement7

of habitat patches (and resulting connectivity) can influence metapopulation8

dynamics.9

2. Here, we utilize long-term data on a classic metapopulation system – the10

Glanville fritillary butterfly occupying a set of dry meadows and pastures in11

the Åland islands – to investigate the relative roles of local environmental12

conditions, geographic space, and connectivity in capturing patch occupancy,13

colonization, and extinction. We defined connectivity using traditional measures14

as well as graph theoretic measures of centrality. Using boosted regression15

tree models, we find roughly comparable model performance among models16

trained on environmental conditions, geographic space, or patch centrality.17

3. In models containing all of the covariates, we find strong and consistent18

evidence for the roles of resource abundance, longitude, and centrality (i.e.,19

connectivity) in predicting habitat patch occupancy and colonization, while20

patch centrality (connectivity) was relatively unimportant for predicting21

extinction. Relative variable importance did not change when geographic22

coordinates were not considered and models underwent spatially-stratified23

cross validation.24

4. Together, this suggests that the combination of regional scale connectivity25

measures and local-scale environmental conditions are important for predicting26

metapopulation dynamics, and that a stronger integration of ideas from27

network theory may provide insight into metapopulation processes.28
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Introduction29

Species often occupy only a portion of potential habitat within their geographic30

range (MacArthur, 1984). This is especially true when species occupy small31

and fragmented habitats within a landscape, resulting in temporally dynamic32

occurrence across the set of interconnected habitat patches i.e., a metapopulation33

(Hanski, 1994a, 1999b). A large body of theory has emerged from the metapopulation34

concept at scales from examinations of entire metapopulations (Gotelli, 1991;35

Gilarranz & Bascompte, 2012), semi-independent networks (Hanski et al., 2017),36

individual habitat patches (Ovaskainen & Hanski, 2003; Ovaskainen, 2017), and37

individuals within habitat patches (Ovaskainen & Hanski, 2004). The continued38

interest in metapopulations has produced many testable hypotheses concerning39

patch occupancy and dynamics (Ovaskainen & Saastamoinen, 2018), and how40

these quantities relate to metapopulation structure (Thomas, 1994; Hanski, 2001).41

Naturally, there are many variables that interact to produce species occurrence in42

a given habitat patch (Guisan & Thuiller, 2005; Elith & Graham, 2009). However,43

despite this complexity, habitat patch area has emerged as a consistently good44

predictor of metapopulation dynamics (Hanski, 1994a; Thomas & Harrison, 1992;45

Hill, Thomas & Lewis, 1996). Habitat patch area, and associated area-isolation46

paradigm (Hanski, 1994a), has been linked to enhanced species persistence (Etienne,47

2004) and colonization (Fleishman et al., 2002), while also decreasing the probability48

of local extinction (Fleishman et al., 2002; Hanski, 1994b; Day & Possingham,49

1995). Much of this rests on the assumption that larger habitats can support50

larger populations and represent a larger target for incoming propagules from51

nearby patches (Ovaskainen & Saastamoinen, 2018); an assumption with mixed52

support (Bowman, Cappuccino & Fahrig, 2002; Rabasa, Gutiérrez & Escudero,53

2008; Anderson & Meikle, 2010). Despite a focus on patch area, other variables54
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are certainly related to metapopulation dynamics (Mortelliti, Amori & Boitani,55

2010). For instance, the spatial position of habitat patches has been linked with56

patch occupancy (Ims, Petter Leinaas & Coulson, 2004; MacKenzie et al., 2017),57

as patches in certain areas may be more likely to be colonized (or rescued) by58

immigration (Eriksson et al., 2014). Spatial position may additionally serve as a59

proxy for some unmeasured aspect of habitat quality or environmental constraints60

on species occurrence. Further, local dynamics may be driven by ecological interactions61

and resource limitation, such that patch occupancy in a given habitat patch62

could be a result of interactions with competitors (Connor & Simberloff, 1979;63

Hamel et al., 2013), resource limitation (Dennis & Eales, 1999; Dennis, Shreeve &64

Van Dyck, 2003), or natural enemies (Steffan-Dewenter & Schiele, 2008). Lastly,65

metapopulation dynamics could be a result of habitat patch connectivity driven66

by physical distance of the patches and/or by the dispersal ability of the focal67

species, suggesting that spatial network statistics may explain patch occupancy68

(Gilarranz & Bascompte, 2012; Grilli, Barabás & Allesina, 2015).69

Measures of habitat patch importance in spatial networks have been developed70

largely outside of the realm of metapopulation ecology, despite measuring similar71

– and sometimes equivalent – properties (see (Urban et al., 2009) and Box 1).72

So what benefit do we obtain from using measures from graph theory in place73

of, or in addition to, existing measures of the importance of a habitat patch74

to the metapopulation, such as patch contribution to metapopulation capacity75

(Ovaskainen & Hanski, 2003)? Measures of centrality attempt to quantify flow76

of information or individuals between habitat patches, but centrality itself can be77

measured in many different ways. That is, measures can be quite local (focused78

only on the immediate connections of a given habitat patch with other patches79

in the immediate vicinity) or global (incorporating information on the spatial80
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distribution of all habitat patches in the network and the connections between81

them). This is advantageous as ecological processes may occur at both of these82

scales simultaneously. One clear example of the potential benefits of using graph83

theoretic centrality measures in place of existing connectivity measures is in the84

case of ’stepping stone’ habitat patches (Bodin & Saura, 2010), which serve to85

connect two habitat patches which otherwise would not be connected by dispersal.86

In graph theory, betweenness centrality measures the number of shortest paths87

between all pairs of habitat patches in the network which go through a given88

habitat patch. This essentially measures, at the network scale, the importance89

of a habitat patch as a potential stepping stone. The further integration of90

metapopulation ecology and graph theory will greatly advance our understanding91

of metapopulation dynamics (Urban et al., 2009).92

But how important are measures of connectivity – either from graph theory or93

from metapopulation ecology – relative to aspects of habitat patch quality, spatial94

position, or patch area? Numerous studies have explored the relationship of each95

of these factors to metapopulation dynamics (e.g., Hanski (1994a); Fleishman et al.96

(2002); Prugh et al. (2008)), but few have weighed the relative effects of different97

covariate groups (but see Rabasa, Gutiérrez & Escudero (2008); Fleishman et al.98

(2002)). Understanding the relative importance of each of these variable sets99

on metapopulation dynamics is a pressing need, as some things change (local100

environmental conditions) and some things tend to stay the same (spatial arrangement101

of habitat patches). Failing to account for this could lead to inaccurate predictions102

concerning metapopulation persistence or misidentification of habitat patch conservation103

targets. It is also important to note that habitat patch quality, spatial position, and104

habitat patch centrality – which putatively determine metapopulation dynamics –105

likely interact to produce spatial variation in habitat patch occupancy, colonization,106

6
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and extinction processes. For instance, resource limitation may only control patch107

occupancy in a given habitat if enough individuals are present and able to disperse108

to the habitat. This density-dependence would result in an interaction between109

resource availability and habitat patch isolation. As such, approaches capable of110

estimating the relative importance of local (e.g., environmental conditions) and111

regional (e.g., spatial arrangement of patches) factors are needed to advance our112

understanding of metapopulation dynamics.113

Here, we address two current shortcomings in examinations of metapopulation114

dynamics. First, we provide a clear link between graph-theoretic measures (i.e.,115

centrality) to connectivity as defined in metapopulation ecology. Second, we116

examine the relative influence of geographic position, habitat (e.g., resource availability),117

and patch connectivity on metapopulation dynamics. To do this, we utilize data118

from a classic well-studied ecological metapopulation, the Glanville fritillary metapopulation119

in the Åland islands (Ojanen et al., 2013; Hanski et al., 2017). While numerous120

studies have examined the influence of patch-level or network-level covariates on121

metapopulation processes, weighing the relative importance of different covariate122

groups is far more rare, despite the potential for synergistic effects (see Table123

1). Our aim is to quantify the contributions of patch area, spatial location,124

local habitat-level variables, and connectivity (i.e, patch centrality in the dispersal125

network) on patch occupancy (fraction of times a patch was occupied), colonization,126

and extinction. In doing so, we highlight the similarities between measures of127

connectivity and centrality (Box 1), and explore whether measures derived from128

metapopulation theory and graph theory are correlated, or whether they measure129

fundamentally different aspects of the network properties (Minor & Urban, 2007;130

Urban et al., 2009). Further, we provide evidence for the importance of local131

habitat conditions and connectivity in driving metapopulation dynamics, suggesting132

7
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that the combination of local environmental conditions with measures of dispersal133

connectivity may best explain metapopulation dynamics (see Table 1). The continued134

integration of graph theoretic measures and flexible statistical approaches that135

allow estimation of relative variable importance will enhance our understanding136

of the relative roles of geography, environment, and dispersal to metapopulation137

dynamics.138

Box 1: Linking metapopulation statistics and graph theory

The development of theory related to metapopulations and spatial graphs – despite

the striking similarities in application – has been largely separate (but see (Urban

et al., 2009; Dale & Fortin, 2010)). This has lead to the development of statistics

different in name, but identical (or quite similar) in application. For instance, habitat

patch connectivity (Si; Equation 1) is a measure from metapopulation ecology, and

quantifies the total immigration potential into a given habitat patch (Hanski, 1999a).

This considers the receiving patch area scaled by some constant im, a negative

exponential dispersal kernel (e−αdij), and the influence of the donor patch area raised

to an emigration term (Aem
j ).

Si =
∑
j ̸=i

Aim
i e−αdijAem

j (1)

If we consider the links between habitat patches in the spatial network as potential

dispersal pathways, the edge between two patches in the network can be defined

according to that same negative exponential dispersal kernel, and patch area

can be included in these link weights if the influence of habitat patch area on

immigration and emigration is well understood (Hanski et al., 2017). Then, a

measure from graph theory, weighted degree centrality (sometimes referred to as
139
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strength) is quantified by summing the edges going into a given habitat patch. This

is equivalent to connectivity measures as developed in metapopulation ecology,

dependent on how patch area is incorporated, and whether degree centrality is

calculated on a directed graph (i.e., dispersal pathways between two nodes are

non-equal). Further, degree centrality is not the only form of centrality in graph

theory, and each different formulation of centrality captures some unique aspect of

centrality. Degree centrality inherently captures local dynamics, as it is concerned

with direct connections of a given habitat patch. However, other measures utilize

information on the entire network and connections between other nodes. For

example, betweenness centrality measures the importance of habitat patches as

bridges between other habitat patches, which is important to conservationists and

managers when designing reserves, especially for migratory species (Fall et al.,

2007). Further, betweenness centrality may better capture the tendency for patches

to maintain connections between patches too far apart to be connected. Meanwhile,

closeness centrality, which measures the mean shortest path distance between a

patch to all other habitat patches, may captures spatial aggregation of habitat

patches, with the potential to be a better predictor of metapopulation dynamics

than more local measures of connectivity (e.g., degree centrality).

Another example of this is the close relationship between the contribution of a

habitat patch to overall metapopulation capacity (λi), developed in the study

of metapopulations, and eigenvector centrality from graph theory. While not

directly analagous, both use a eigenvector decomposition of the dispersal network

to estimate the importance of each habitat patch to the overall structure of the

spatial network. Using the Åland metapopulation as an example, we see the clear

positive relationship between habitat patch contribution to metapopulation capacity
140
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(Ovaskainen, 2003; Grilli, Barabás & Allesina, 2015) and eigenvector centrality

(Figure 1). A more direct example, though less often used currently, is the hub

score (Kleinberg, 1999), which is nearly identical to metapopulation capacity. The

only difference is that metapopulation capacity is calculated on the dispersal matrix

(M) and the hub score is calculated on the positive definite matrix obtained by

multiplying the matrix by it’s transpose (M×MT).

The theory developed for the study of networks – even solely the development of

theory related to spatial graphs – is more general and more broadly utilized than the

theory of metapopulations (Newman, 2003; Barthélemy, 2011), despite the fact that

metapopulations are clear examples of spatial graphs. The application of approaches

from graph theory may provide further insight into metapopulation structure and

resulting metapopulation dynamics.
141
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Figure 1: A strong positive relationship exists between patch contribution to

metapopulation capacity (λi) and eigenvector centrality. Each point corresponds

to a habitat patch in the Åland island metapopulation system. Eigenvector

centrality was based on a dispersal network formed assuming an exponential decay

in dispersal probability between patches (α = 1 and p= 0.001, as described further

in the Spatial network formation section).
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Methods142

Glanville fritillary metapopulation143

In the Åland islands, a set of nearly 5000 habitat patches have been monitored144

annually since 1993. The habitat in the Åland Islands is highly fragmented and145

the butterfly has a classic metapopulation structure with a high rate of population146

turnover – i.e., extinctions and re-colonizations (Hanski, 1999b, 2011). However,147

as some habitat patches were not surveyed for the entire duration of the study, we148

restrict our analyses to patches surveyed between 2000 - 2017, resulting in a total149

of 4652 habitat patches distributed broadly across the Åland islands. However,150

for patches for which environmental data was available prior to 2000, we included151

these years to estimate the mean environmental conditions. Each habitat patch is152

a dry meadow or pasture occupied by one or more host plant species – Plantago153

lanceolata or Veronica spicata – which serve as a larval food source and oviposition154

resource to the butterfly of interest, Melitaea cinxia.155

The dry meadows and pastures have been surveyed for the presence and numbers156

of larval groups during fall (Hanski, 1999b, 2011). This is possible as the females157

of the Glanville fritillary butterfly lay clutches of eggs, the larvae live gregariously,158

and at the end of the summer the larvae build a conspicuous “winter nest” at159

the base of the host plant inside which they diapause overwinter in groups of160

mainly full sibs (Kuussaari et al., 2004; Fountain et al., 2018). Each fall all of161

the potential habitat patches are surveyed for the presence of these larval nests162

(see (Ojanen et al., 2013) for details of the survey). Based on control surveys163

it has been estimated that the presence of the butterfly is not detected in up164

to 15% of occupied patches with non-detection mainly occurring in very small165

populations (Hanski et al., 2017). Based on the long term data we know that166

12
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all local populations are more or less ephemeral, due to being very small and167

commonly having just a single or a few larval groups in a given year (Hanski,168

1999b, 2011).169

Patch occupancy, colonization, and extinction170

Occupancy was quantified as the fraction of times a habitat patch was occupied171

by M. cinxia during the survey. This provides insight into how often a given habitat172

patch contributed to metapopulation dynamics, as more frequently occupied patches173

are likely more important to enhancing metapopulation persistence and providing174

propagules to other nearby patches. The spatial distribution of patch occupancy175

clearly identifies hotspots of habitat patches which maintain the metapopulation176

(Figure 2).177

Colonization rate captures how fast a habitat patch becomes re-colonized after178

a local extinction. We quantified colonization probability as the number of times179

that M. cinxia was present when it did not occur in the previous sampling period180

divided by the total number of possible colonization events (i.e., the number of181

sampling periods where the species was absent, not considering the most recent182

sampling period). Extinction probability was measured in a similar manner,183

calculated as the number of times a species was recorded as absent when it184

was observed in that patch in the prior sampling period, divided by the total185

number of potential extinction events. Patches with high turnover – those that186

are colonized and go extinct often – may simply be sinks for propagules from more187

persistent patches. On the other hand, these patches may contribute strongly188

to metapopulation persistence if they serve as temporary spillover habitats or189

provide dispersal connections with more distant patches (Howe, Davis & Mosca,190

1991; Hanski & Simberloff, 1997).191
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The full number of habitat patches (n = 4652) was used for analyses of patch192

occupancy. Habitat patches that were never occupied (n = 2595), and those193

that remained occupied for the entire sampling duration (n = 21) were removed194

from calculation of colonization and extinction, resulting in 2057 and 4631 habitat195

patches, for examinations of colonization and extinction, respectively.196

Defining the spatial network197

Habitat patches exist in a mosaic of inhospitable habitat to M. cinxia, and links198

between habitat patches represent potential dispersal pathways. Based on previous199

research (Hanski et al., 2017) we considered dispersal probability to decay exponentially200

with geographic distance between habitat patches. We constructed a network201

based on this exponential decay (α = 1 km−1), and removed links below a threshold202

dispersal probability (p = 0.001). We examine the sensitivity of the resulting203

dispersal network structure in the Supplemental Material, finding no appreciable204

difference in patch connectivity estimates (see Figure S1). Patch area may influence205

dispersal probability and subsequent links between habitat patches in the network206

(Hanski, 2001; Hanski et al., 2017). We incorporated the influence of patch area207

on the structure of the dispersal network by modifying the negative exponential208

dispersal kernel, where links between two habitat patches were defined as a function209

of the area of both patches (Ai and Aj), both of which were raised to constants210

obtained from previous studies (Hanski et al., 2017), which represent the relationships211

between patch area and immigration (im = 0.3) and emigration (em = 0.3) rates212

(see Equation 1). This is discussed further in Box 1, which conceptually links213

measures of centrality to existing concepts in metapopulation ecology. We found214

qualitatively similar results when habitat patch area was not allowed to influence215

dispersal links (see Supplemental Materials).216
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Variables influencing patch occupancy, colonization, and extinction217

We divided variables into four different groups, in order to compare model performance218

among variable groups, while also considering a full model including all variables.219

We also consider every combination of the variable groups in the Supplemental220

Materials, providing even further support for our conclusions. The variable groups221

consisted of patch area (a baseline model which only considers the log-transformed222

habitat patch area), habitat (containing local patch level environmental variables),223

spatial (containing spatial position of each habitat patch), and network (containing224

measures of patch centrality). Expected relationships between variable groups and225

metapopulation dynamics are provided in Table 1, and each of the variable groups226

are outlined in Table 2, with each variable described below.227

Patch area was estimated during sampling, with the median patch area being228

approximately 0.6 ha. The spatial location of each habitat patch was mapped with229

GPS during the survey (Ojanen et al., 2013). Grazing pressure was estimated as230

the estimated fraction of the habitat patch subjected to grazing pressure based on231

observations of damaged plants or the presence of grazers (e.g., ungulates). We232

quantified resource availability as the mean abundance, and the summed mean233

abundance of the two host plants (Plantago lanceolata and Veronica spicata),234

where abundance of each host plant was estimated based on an ordinal scale235

between 0 and 3, with larger values corresponding to a greater plant abundance.236

Previous findings in a rodent herbivore metapopulation suggest that temporal237

variability in resources can influence metapopulation dynamics (Fernández, Román238

& Delibes, 2016). We explore this in the Supplemental Materials by calculating239

the standard deviation in total resource availability (the summed abundance of240

both host plants). We find little evidence that variability in resource abundance241

influences metapopulation dynamics (see Supplemental Materials for further analyses242
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and discussion), suggesting that species life history may play a large role in estimating243

the relative importance of spatial and environmental variables on metapopulation244

dynamics (Fernández, Román & Delibes, 2016). Resource quality may be reduced245

as a function of infection by a powdery mildew pathogen, which has been found246

to reduce M. cinxia larval development over the summer (Rosa et al., 2018) and247

influence overwintering survival (Laine, 2004). Mildew infection was estimated by248

quantifying the fraction of times mildew pathogen was detected in each habitat249

patch.250

Habitat patch importance in the spatial network was estimated using patch251

centrality measures. Specifically, we examined four common centrality measures,252

each capturing different aspects of habitat patch importance in the dispersal253

network (M; equations for each connectivity measure are provided in the Supplemental254

Materials). First, weighted degree centrality – also called strength – measures255

the summed links (dispersal pathways) for each habitat patch. This measures256

the immediate connections to neighboring patches. Next, we considered closeness257

centrality, which incorporates the structure of the overall network, measuring the258

average shortest path distance between each habitat patch to all other habitat259

patches. Habitat patches with large closeness values would be well connected to260

other patches in the context of the entire network, while degree centrality measures261

habitat patch importance in a neighborhood context. Next, we considered betweenness262

centrality, which measures the number of shortest paths between habitat patches263

that go through a given habitat patch. This is important, as habitat patches with264

high betweenness may serve as stepping stones between two otherwise unconnected265

habitats. Lastly, we measured eigenvector centrality, which measures the importance266

of habitat patches as defined by the importance of connected habitat patches. That267

is, a habitat patch may not be strongly connected to many other habitats, but be268

16
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connected to a patch that is quite well connected to other patches (i.e., serves an269

important role in the metapopulation). This could occur when a patch is spatially270

removed from much of the spatial network, but connected to nearby patches which271

are more well connected to other habitat patches.272

Boosted regression tree models273

Boosted regression tree (BRT) models were used to assess how patch area, geographic274

space, habitat-level variation, and patch centrality influence M. cinxia occupancy275

and colonization using the gbm R package (with contributions from others, 2017).276

This modeling approach has been used previously for prediction (Elith, Leathwick277

& Hastie, 2008; De’Ath, 2007), in part because it allows for non-linear responses278

and variable interactions. Since the regression tree is hierarchical, "upstream"279

splits based on one variable influence "downstream" splits, which automatically280

models variable interactions. Further, the process of boosting enhances learning on281

complex data, as the process produces many regression trees with a small number282

of splits, each of these "weak learners" iteratively build on previous trees to account283

for the remaining variation. This approach removes the need to partition variance284

among submodels, as the goal is not to examine the components of variance285

explained, but to assess overall model performance with the inclusion or exclusion286

of particular variable sets.287

For each of the four covariate groups and the full model containing all covariates,288

models were trained, cross-validated, and evaluated for performance five times289

(each on a different random subset of 80% of the data) to examine the consistency290

of model performance and covariate relative importance. Models were trained291

using a maximum of 50,000 trees, with a learning rate of 0.001 (Elith, Leathwick &292

Hastie, 2008), Gaussian error structure, and an interaction depth of 3, which allows293

17
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for interactions between covariates. All models were internally cross-validated294

(5-fold) to determine the optimal number of regression trees.295

Models were trained on 80% of the data, and the remaining 20% was used296

to assess model performance. Accuracy was quantified using Spearman’s rank297

correlations between predicted values from the trained model and the empirical298

estimates of occupancy, colonization or extinction for each habitat patch in the299

20% of the data which was used for testing (i.e., those data that were not used300

for model training). In the Supplemental Materials, we further quantify accuracy301

using Pearson’s correlation and root mean square error (RMSE).302

It is possible that spatial autocorrelation in metapopulation dynamics could lead303

to model overfitting when trained on spatial coordinate data. This would inflate304

the relative contribution of latitude and longitude in the full models, and lead to305

the spatial submodel appearing to perform well, when in fact it is simply fitting to306

spatial variation. While this could be informative if system-specific prediction was307

the goal, the ability of the model to extrapolate would be compromised. To explore308

the effect of spatial predictors on model transferrability, we also performed the309

cross validation by dividing the data spatially into five longitudinal folds (models310

were trained on four, and used to predict the remaining data).311

The relative importance of each predictor variable in the full model containing312

all the covariates was estimated by quantifying the relative improvement to model313

fit as a result of the inclusion of a given covariate into the model, weighted by314

the number of trees in which the covariate occurred (Elith, Leathwick & Hastie,315

2008; De’Ath, 2007). The resulting relative contribution values are scaled between316

0 and 100, with larger numbers corresponding to higher variable importance, and317

the relative importance of all covariates summing to 100. To assess how important318
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covariates influenced model predictions, we examined partial dependence plots,319

which capture the influence of a given variable on occupancy or colonization after320

accounting for other covariates (Elith, Leathwick & Hastie, 2008). Data and code321

to reproduce the analyses is provided at https://doi.org/10.6084/m9.figshare.7667096.322

Results323

Boosted regression tree model performance differed as a function of covariate324

group, with models trained on patch area generally performing the worst, and the325

model including all covariates performing best (Figure 3). The remaining models326

– consisting of local habitat variables, geographic location, or patch centrality –327

performed approximately equivalently (Figure 3). Considering all combinations328

of submodels, we find that the full model typically performed best, though in329

some cases the inclusion of patch area in the full model actually reduces model330

performance slightly, as does the geographic coordinates of the habitat patches (see331

Supplemental Materials). This suggests that the most important covariate sets332

to estimating metapopulation dynamics are local environmental conditions and333

habitat patch centrality (connectivity) measures (see Supplemental Materials for334

an expanded discussion). Model performance generally decreased when data were335

spatially stratified during 5-fold cross validation (open circles in Figures 3 and 4),336

suggesting the existence of a spatial signal in patch area, habitat characteristics,337

and spatial network structure. This spatial signal could exist through spatial338

autocorrelation, or because the effect of the covariate on metapopulation dynamics339

differs across space. Despite the existence of a spatial signal that influenced all340

submodels (e.g., the habitat model in Figure 3), the model including all variables341

tended to still outperform the submodels, and relative variable importance in342

these models was essentially unchanged by the cross-validation approach (Figure343
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4). However, the habitat model tended to perform just as well as the full model344

when models were spatially cross-validated, suggesting the importance of the local345

habitat on metapopulation dynamics (Figure 3).346

Model performance and ranking were insensitive to the measure of model performance347

used (see Supplemental Materials). For models of extinction probability, the348

model containing local habitat covariates performed quite well, and submodels349

were relatively unaffected by the spatially stratified cross validation (Figure 3).350

Together, our findings suggest that patch occupancy, colonization, and extinction351

may be estimated to an approximately equal extent from detailed data on local352

habitat patch quality (habitat model) or more regional measures of patch connectivity353

(network model), but that joint effects between variables necessitate the inclusion354

of both local scale habitat variables and regional scale patch connectivity.355

Variables influencing patch occupancy, colonization, and extinction356

While many of the models trained on different covariate groups performed nearly357

equivalently (Figure 3), the relative importance of covariates in the full model358

under random cross-validation suggests that resource availability, longitude, and359

degree centrality were the dominant contributors to model performance (Figure360

4). When latitude and longitude were not included in the spatially cross-validated361

models, the key predictors remained quite similar (i.e., resources and degree centrality).362

Eigenvector centrality, a measure of connectivity which incorporates information363

on connections of patches which a focal node is connected to, became more important364

in the spatially cross-validated models, potentially as a result of this measure365

capturing aspects of the spatial positions of the habitat patches. However, eigenvector366

and degree centrality tend to be highly correlated (r = 0.48 , p < 0.001), and are367

both similarly related to metapopulation dynamics (Figure S6).368
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The partial dependence plots of each covariate in the full model suggest that369

resource availability and degree centrality both were positively related to occupancy370

and colonization (Figure S6). However, while resource availability was important371

and non-linearly related to extinction probability prediction, no measure of patch372

centrality (connectivity) improved the model substantially. The importance of373

patch centrality to patch occupancy and colonization relates to the amount of374

immigration to a given patch, which is naturally related to patch colonization375

probability (Hanski, 1991, 1999b), and could also reduce extinction risk through376

rescue effects (Eriksson et al., 2014; Ovaskainen, 2017). However, this effect377

appeared weak, as models of extinction containing patch centrality only marginally378

outperformed a model containing only patch area (Figure 4), and no patch centrality379

measure was in the top three predictive variables in the full model (Figure S6).380

When patch area was not allowed to influence patch centrality measures, patch area381

became more important in estimating metapopulation dynamics. However, patch382

centrality measures still retained an important role in estimating metapopulation383

dynamics as well (see Supplemental Materials).384

Interestingly, the summed resource abundance was more important than the385

abundance of either host plant (P. lanceolata and V. spicata) in isolation, suggesting386

the importance of considering the entire resource community instead of simply387

the most dominant host plant (P. lanceolata). Further, this value of resource388

abundance was the top predictor in all three full models of patch occupancy,389

colonization, and extinction (Figure 4), suggesting a pronounced effect of resource390

availability on metapopulation dynamics. The stronger relative effect of total391

resource abundance instead of the abundance of either host plant may relate to392

variable feeding preferences of individuals in a population, or behavioral flexibility393

in host plant utilization. That is, even if both resource plants were equally suitable394
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resources, low abundance of one resource does not negate the presence of another395

suitable resource, making the summed resource abundance a clearer measure of396

resource availability for the butterflies.397

Discussion398

Metapopulation dynamics were best captured when both local environmental conditions399

and regional scale effects of habitat patch arrangement were considered. Secondly,400

while degree centrality – which is equivalent to how connectivity is typically401

defined in metapopulation studies – was largely the most important connectivity402

measure, other connectivity measures which incorporate more information about403

the surrounding network were also important (e.g., eigenvector centrality in models404

of occupancy and colonization). Together, this suggests that future research405

should incorporate multiple scales of information to understand metapopulation406

dynamics. Further, the joint effects of local and regional variables served to407

enhance model prediction, as evidenced by the substantial improvement in the full408

model relative to models including habitat, spatial, or network variables separately.409

Models incorporating local habitat variables, patch centrality, and geographic410

location performed nearly equivalently in estimating metapopulation dynamics,411

suggesting that the performance of more ecologically meaningful (habitat variables)412

models was roughly equivalent to less ecologically meaningful (spatial patch location)413

models. This is potentially due to systematic spatial variation in patch quality, the414

existence of strong dispersal limitation, or simply a model overfit to spatial data415

(see Supplemental Materials). Weighing the relative importance of all covariates416

in the full model, we consistently found that resource availability and degree417

centrality were important in estimating patch occupancy, colonization, and extinction418

probability (though patch area was comparably as important as patch centrality for419
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extinction probability estimation). While network statistics may provide equivalent420

performance as more system-specific covariates for predicting patch occupancy421

and colonization, it is the combination of spatial processes, resource availability422

(Hanski et al., 2017), and patch centrality (connectivity) that, in concert, best423

capture overall metapopulation dynamics.424

The relative importance of network statistics to model performance suggests that425

metapopulation dynamics are strongly influenced by the structure of the network426

of habitat patches and the dispersal connections between them. This supports427

previous findings that patch centrality, independent of habitat patch quality, can428

approximate patch occupancy patterns (Hanski, 1991, 2011). However, these429

studies have largely focused on the role of patch area as it influences centrality,430

a connection which may take a variety of functional forms (Anderson & Meikle,431

2010; Hambäck & Englund, 2005) given density-dependence in dispersal processes.432

We find that excluding the influence of patch area on centrality measures does tend433

to increase the influence of patch area estimates relative to patch centrality, and434

reduces the predictive accuracy of the network submodel greatly, suggesting that435

taking patch size when estimating dispersal connections between habitat patches436

is important (see Supplemental Materials). By the same token, the importance of437

resource availability suggests an important role for local patch quality on metapopulation438

dynamics, and the importance of habitat patch geographic position suggests that439

dispersal limitation and historical patch occupancy can influence resulting metapopulation440

dynamics. Lastly, the relative unimportance of patch connectivity to extinction441

probability may provide a further signal of the importance of scale, as occupancy442

and colonization may be more dependent on regional scale processes connecting443

habitat patches to one another, while extinction may be far more dependent on444

local environmental conditions, such as resource availability (Franzén & Nilsson,445
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2010) (but see (Rabasa, Gutiérrez & Escudero, 2008)). That is, while connectivity446

may rescue populations from extinction, patch extinction probability may ultimately447

be more a function of local environmental conditions than patch connectivity.448

Apart from considering both local patch-scale processes and regional processes449

simultaneously, it is important to consider how dynamic or successional habitats450

can influence metapopulation dynamics (Hodgson, Moilanen & Thomas, 2009).451

That is, patch occupancy, colonization, and extinction were calculated under the452

assumption that the habitat did not change substantially, and that mean quantities453

accurately captured patch quality. We partially addressed the issue of dynamic454

environments by considering variation in resource abundance, which was found455

to be unimportant to estimating metapopulation dynamics (see Supplemental456

Material). Apart from dynamic habitats, numerous layers of complexity have been457

added to the existing patch area - connectivity paradigm, including incorporating458

informed or aggregated dispersal (Conradt et al., 2000; Smith & Peacock, 1990),459

matrix habitat quality (Kuussaari, Nieminen & Hanski, 1996; Ricketts, 2001),460

and genetic information (Fountain et al., 2018; Lamy et al., 2012). The question461

then becomes, which of these additional layers are among the most important? If462

prediction of patch occupancy, colonization, and extinction is equally possible using463

data on spatial position compared to models incorporating patch level habitat464

variation or genetic data, it seems worthwhile to assess both the reasons behind465

the similarity, as well as the overall goal of the research. That is, additional466

layers become unnecessary if prediction of metapopulation dynamics is the goal,467

as simple measures of habitat patch centrality – even in the absence of habitat468

patch area – predict dynamics comparably to more highly parameterized models469

incorporating patch-level covariates. This is not to say that future research on the470

environmental, spatial, and genetic factors affecting metapopulation dynamics is471
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not warranted. Quite the contrary. However, it would be useful to weigh the effect472

of these additional layers relative to basic models incorporating only information473

on patch area or network structure, as these simple models can provide benchmarks474

to assess the relative importance of additional factors.475

Metapopulation ecology shares numerous conceptual and analytical commonalities476

with landscape ecology (DiLeo, Husby & Saastamoinen, 2018; Howell et al., 2018)477

and network ecology (Box 1 and (Urban & Keitt, 2001; Urban et al., 2009)).478

Bridging these disciplines can provide conceptual synthesis and lead to a better479

understanding of patch occupancy patterns (Urban & Keitt, 2001; Rozenfeld et al.,480

2008; Gilarranz & Bascompte, 2012; Zamborain-Mason et al., 2017). We find481

that local scale habitat variables are equally capable of predicting metapopulation482

dynamics as regional scale measures of connectivity, but that the best performing483

models included both local and regional scale variables together. This result may484

not scale to other metapopulation systems. However, differences in the balance485

of local scale patch quality and regional scale patch connectivity in other systems486

may provide insight into the drivers of metapopulation dynamics. Species life487

history becomes important to consider as well, as the dynamics of a species with488

narrow environmental tolerance and large dispersal kernel will be much more489

controlled by local scale processes than regional connectivity. Overall, our findings490

suggest that multi-scale approaches to estimating patch occupancy are important,491

especially considering the use of patch occupancy models in conservation decisions492

(Lande, 1988; Hanski & Ovaskainen, 2000; Lipcius et al., 2008). Lastly, the use493

of statistical tools allowing for non-linear relationships and variable interactions494

is important to weighing the relative variable importance. A focus on the ability495

to predict metapopulation dynamics is paramount given shifting environmental496

conditions and land use changes resulting in non-random habitat patch destruction,497
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deterioration, and alteration to dispersal links among habitat patches.498
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le Table 2: The identities of each of the covariates included in the submodels (e.g.,

habitat). All covariates were included in the full model, in order to estimate overall

importance of each covariate. The measurement or estimation of each variable is

described in more detail in the Variables influencing occupancy and colonization

Methods section.

Group Variable Description

Patch area log(Patch area) Area of habitat patch in km2

Habitat Resource availability Total resources on ordinal scale (0-6)

Plantago lanceolata Plantago resources on ordinal scale (0-3)

Veronica spicata Veronica resources on ordinal scale (0-3)

Grazing pressure Estimated percentage of plants grazed

Mildew infection Fraction of time mildew pathogen found in given patch

Spatial Latitude Latitudinal coordinate of patch (decimal degrees)

Longitude Longitudinal coordinate of patch (decimal degrees)

Network Betweenness centrality Patch importance measure focused on stepping stones

Closeness centrality Importance measure based on the entire dispersal network

Degree centrality Local-scale importance of dispersal connections

Eigenvector centrality Importance estimated by connections to important patches
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Figure 2: Maps of the Åland islands showing the distribution of sampled habitat

patches as part of the monitoring effort, with habitat patches colored by the

fraction of times the sampled patch was occupied between the period of 2000-2017.

Patches in grey are those in which Glanville fritillary butterfly (M. cinxia) was

never recorded.
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Figure 3: Model performance – defined as Spearman’s correlation coefficient

between model-predicted values and empirical data from a subset of data

not used to train the model – for each of the candidate models with both

random cross-validation (closed circles) and spatially-stratified cross-validation

(open circles). Plotted points correspond to average correlations across the ten

cross-validated models, and bars correspond to standard deviation. Glyphs are

from Font Awesome (https://fontawesome.com/).
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Figure 4: The trained boosted regression tree models revealed that resource

availability, degree centrality, and longitude were important predictors of

patch occupancy, colonization, and extinction. Variable relative importance

remains quite similar with both random cross-validation (closed circles) and

spatially-stratified cross-validation (open circles). Bars represent standard

deviation across the set of five trained models on different subsets of data.
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Figure 5: Partial dependence plots for the top three predictors in the boosted

regression tree model of M. cinxia occupancy (top row), colonization (middle

row), and extinction (bottom row), showing the relationships between each

metapopulation process and the top three predictive variables in each model

when models were cross validated by spatially stratification. The most important

variables in the full models of occupancy, colonization, and extinction tended to

be related to resource availability and connectivity.
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