165 research outputs found

    Piecewise Rational Manifold Surfaces with Sharp Features

    Full text link
    We present a construction of a piecewise rational free-form surface of arbitrary topological genus which may contain sharp features: creases, corners or cusps. The surface is automatically generated from a given closed triangular mesh. Some of the edges are tagged as sharp ones, defining the features on the surface. The surface is C s smooth, for an arbitrary value of s, except for the sharp features defined by the user. Our method is based on the manifold construction and follows the blending approach

    Subpopulation treatment effect pattern plot analysis: a prognostic model for distant recurrence-free survival to estimate delayed adjuvant chemotherapy initiation effect in triple-negative breast cancer

    Get PDF
    IntroductionTriple-negative breast cancer (TNBC) is a heterogeneous disease associated with a poor prognosis. Delaying in time to start adjuvant chemotherapy (TTC) has been related to an increased risk of distant recurrence-free survival (DRFS). We aimed to develop a prognostic model to estimate the effects of delayed TTC among TNBC risk subgroups.Materials and methodsWe analyzed 687 TNBC patients who received adjuvant chemotherapy at the Instituto Nacional de Enfermedades Neoplasicas (Lima, Peru). Database was randomly divided to create a discovery set (n=344) and a validation set (n=343). Univariate and multivariate Cox regression models were performed to identify prognostic factors for DRFS. Risk stratification was implemented through two models developed based on proportional hazard ratios from significant clinicopathological characteristics. Subpopulation treatment effect pattern plot (STEPP) analysis was performed to determine the best prognostic cut-off points for stratifying TNBC subgroups according to risk scores and estimate Kaplan-Meier differences in 10-year DRFS comparing TTC (≤30 vs.>30 days).ResultsIn univariate analysis, patients aged ≥70 years (HR=4.65; 95% CI: 2.32-9.34; p=<0.001), those at stages pT3-T4 (HR=3.28; 95% CI: 1.57-6.83; p=0.002), and pN2-N3 (HR=3.00; 95% CI: 1.90-4.76; p=<0.001) were notably associated with higher risk. STEPP analysis defined three risk subgroups for each model. Model N°01 categorized patients into low (score: 0–31), intermediate (score:32–64), and high-risk (score: 65–100) cohorts; meanwhile, Model N°02: low (score: 0–26), intermediate (score: 27–55), and high (score: 56–100). Kaplan-Meier plots showed that in the discovery set, patients with TTC>30 days experienced a 17.5% decrease in 10-year DRFS rate (95%CI=6.7-28.3), and the impact was more remarkable in patients who belong to the high-risk subgroup (53.3% decrease in 10 years-DRFS rate). Similar results were found in the validation set.ConclusionsWe developed two prognostic models based on age, pT, and pN to select the best one to classify TNBC. For Model N°02, delayed adjuvant chemotherapy conferred a higher risk of relapse in patients ≥70 years and who were characterized by pT3/T4 and pN2/N3. Thus, more efforts should be considered to avoid delayed TTC in TNBC patients, especially those in high-risk subgroups

    Towards emotion recognition for virtual environments: an evaluation of eeg features on benchmark dataset

    Get PDF
    One of the challenges in virtual environments is the difficulty users have in interacting with these increasingly complex systems. Ultimately, endowing machines with the ability to perceive users emotions will enable a more intuitive and reliable interaction. Consequently, using the electroencephalogram as a bio-signal sensor, the affective state of a user can be modelled and subsequently utilised in order to achieve a system that can recognise and react to the user’s emotions. This paper investigates features extracted from electroencephalogram signals for the purpose of affective state modelling based on Russell’s Circumplex Model. Investigations are presented that aim to provide the foundation for future work in modelling user affect to enhance interaction experience in virtual environments. The DEAP dataset was used within this work, along with a Support Vector Machine and Random Forest, which yielded reasonable classification accuracies for Valence and Arousal using feature vectors based on statistical measurements and band power from the and waves and High Order Crossing of the EEG signal

    Oxygen-glucose deprivation induces ATP release via maxi-anion channels in astrocytes

    Get PDF
    ATP represents a major gliotransmitter that serves as a signaling molecule for the cross talk between glial and neuronal cells. ATP has been shown to be released by astrocytes in response to a number of stimuli under nonischemic conditions. In this study, using a luciferin-luciferase assay, we found that mouse astrocytes in primary culture also exhibit massive release of ATP in response to ischemic stress mimicked by oxygen-glucose deprivation (OGD). Using a biosensor technique, the local ATP concentration at the surface of single astrocytes was found to increase to around 4 μM. The OGD-induced ATP release was inhibited by Gd3+ and arachidonic acid but not by blockers of volume-sensitive outwardly rectifying Cl− channels, cystic fibrosis transmembrane conductance regulator (CFTR), multidrug resistance-related protein (MRP), connexin or pannexin hemichannels, P2X7 receptors, and exocytotic vesicular transport. In cell-attached patches on single astrocytes, OGD caused activation of maxi-anion channels that were sensitive to Gd3+ and arachidonic acid. The channel was found to be permeable to ATP4− with a permeability ratio of PATP/PCl = 0.11. Thus, it is concluded that ischemic stress induces ATP release from astrocytes and that the maxi-anion channel may serve as a major ATP-releasing pathway under ischemic conditions

    ATP signalling in epilepsy

    Get PDF
    This paper focuses on a role for ATP neurotransmission and gliotransmission in the pathophysiology of epileptic seizures. ATP along with gap junctions propagates the glial calcium wave, which is an extraneuronal signalling pathway in the central nervous system. Recently astrocyte intercellular calcium waves have been shown to underlie seizures, and conventional antiepileptic drugs have been shown to attenuate these calcium waves. Blocking ATP-mediated gliotransmission, therefore, represents a potential target for antiepileptic drugs. Furthermore, while knowledge of an antiepileptic role for adenosine is not new, a recent study showed that adenosine accumulates from the hydrolysis of accumulated ATP released by astrocytes and is believed to inhibit distant synapses by acting on adenosine receptors. Such a mechanism is consistent with a surround-inhibitory mechanism whose failure would predispose to seizures. Other potential roles for ATP signalling in the initiation and spread of epileptiform discharges may involve synaptic plasticity and coordination of synaptic networks. We conclude by making speculations about future developments

    Regulation of cell-to-cell communication mediated by astrocytic ATP in the CNS

    Get PDF
    It has become apparent that glial cells, especially astrocytes, not merely supportive but are integrative, being able to receive inputs, assimilate information and send instructive chemical signals to other neighboring cells including neurons. At first, the excitatory neurotransmitter glutamate was found to be a major extracellular messenger that mediates these communications because it can be released from astrocytes in a Ca2+-dependent manner, diffused, and can stimulate extra-synaptic glutamate receptors in adjacent neurons, leading to a dynamic modification of synaptic transmission. However, recently extracellular ATP has come into the limelight as an important extracellular messenger for these communications. Astrocytes express various neurotransmitter receptors including P2 receptors, release ATP in response to various stimuli and respond to extracellular ATP to cause various physiological responses. The intercellular communication “Ca2+ wave” in astrocytes was found to be mainly mediated by the release of ATP and the activation of P2 receptors, suggesting that ATP is a dominant “gliotransmitter” between astrocytes. Because neurons also express various P2 receptors and synapses are surrounded by astrocytes, astrocytic ATP could affect neuronal activities and even dynamically regulate synaptic transmission in adjacent neurons as if forming a “tripartite synapse” In this review, we summarize the role of astrocytic ATP, as compared with glutamate, in gliotransmission and synaptic transmission in neighboring cells, mainly focusing on the hippocampus. Dynamic communication between astrocytes and neurons mediated by ATP would be a key event in the processing or integration of information in the CNS

    Chemotactic activity of extracellular nucleotideson human immune cells.

    Get PDF
    Purinergic P2 receptors are a class of plasma membrane receptors that are express in many tissues and are ligated by extracellular nucleotides [such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), uridine 5–triphosphate (UTP) and uridine 5–diphosphate (UDP)], which are released as a consequence of cell damage, cell stress, bacterial infection or other noxious stimuli. According to the molecular structure, P2 receptors are divided into two subfamilies: P2X and P2Y receptors. The P2X receptors are ligand-gated channels, whereas P2Y receptors are G-protein-coupled seven-membrane-spanning receptors. Several studies indicate that nucleotides play an important role in immune response modulation through their action on multiple cell types, including monocytes, mast cells, dendritic cells, neutrophils, and eosinophils. Recent work by our group and others identified extracellular nucleotides as chemotaxins for various human immune cells, including eosinophils, neutrophils and dendritic cells. In this review, we summarise recent findings in this field and put forward a hypothesis on the role of P2 receptors in the early recruitment of human immune cells to the site of inflammation

    Regulatory Effect of Connexin 43 on Basal Ca2+ Signaling in Rat Ventricular Myocytes

    Get PDF
    Background: It has been found that gap junction-associated intracellular Ca 2+ [Ca 2+]i disturbance contributes to the arrhythmogenesis and hyperconstriction in diseased heart. However, whether functional gaps are also involved in the regulation of normal Ca 2+ signaling, in particular the basal [Ca 2+] i activities, is unclear. Methods and Results: Global and local Ca 2+ signaling and gap permeability were monitored in cultured neonatal rat ventricular myocytes (NRVMs) and freshly isolated mouse ventricular myocytes by Fluo4/AM and Lucifer yellow (LY), respectively. The results showed that inhibition of gap communication by heptanol, Gap 27 and flufenamic acid or interference of connexin 43 (Cx43) with siRNA led to a significant suppression of LY uptake and, importantly, attenuations of global Ca 2+ transients and local Ca 2+ sparks in monolayer NRVMs and Ca 2+ sparks in adult ventricular myocytes. In contrast, overexpression of rat-Cx43 in NRVMs induced enhancements in the above measurements, and so did in HEK293 cells expressing rat Cx43. Additionally, membrane-permeable inositol 1,4,5-trisphosphate (IP3 butyryloxymethyl ester) and phenylephrine, an agonist of adrenergic receptor, could relieve the inhibited Ca 2+ signal and LY uptake by gap uncouplers, whereas blockade of IP 3 receptor with xestospongin C or 2-aminoethoxydiphenylborate mimicked the effects of gap inhibitors. More importantly, all these gap-associated effects on Ca 2+ signaling were also found in single NRVMs that only have hemichannels instead of gap junctions. Further immunostaining/immunoblotting single myocytes with antibod
    corecore