17,428 research outputs found

    Dynamical phase transition in vibrational surface modes

    Full text link
    We consider the dynamical properties of a simple model of vibrational surface modes. We obtain the exact spectrum of surface excitations and discuss their dynamical features. In addition to the usually discussed localized and oscillatory regimes we also find a second phase transition where surface mode frequency becomes purely imaginary and describes an overdamped regime. Noticeably, this transition has an exact correspondence to the oscillatory - overdamped transition of the standard oscillator with a frictional force proportional to velocity.Comment: 4 pages, 3 figures. To appear in Braz. J. Phy

    Pair Partitioning in time reversal acoustics

    Get PDF
    Time reversal of acoustic waves can be achieved efficiently by the persistent control of excitations in a finite region of the system. The procedure, called Time Reversal Mirror, is stable against the inhomogeneities of the medium and it has numerous applications in medical physics, oceanography and communications. As a first step in the study of this robustness, we apply the Perfect Inverse Filter procedure that accounts for the memory effects of the system. In the numerical evaluation of such procedures we developed the Pair Partitioning method for a system of coupled oscillators. The algorithm, inspired in the Trotter strategy for quantum dynamics, obtains the dynamic for a chain of coupled harmonic oscillators by the separation of the system in pairs and applying a stroboscopic sequence that alternates the evolution of each pair. We analyze here the formal basis of the method and discuss his extension for including energy dissipation inside the medium.Comment: 6 pages, 4 figure

    Exponentially fitted fifth-order two-step peer explicit methods

    Get PDF
    The so called peer methods for the numerical solution of Initial Value Problems (IVP) in ordinary differential systems were introduced by R. Weiner et al [6, 7, 11, 12, 13] for solving different types of problems either in sequential or parallel computers. In this work, we study exponentially fitted three-stage peer schemes that are able to fit functional spaces with dimension six. Finally, some numerical experiments are presented to show the behaviour of the new peer schemes for some periodic problems

    Exact time-reversal focusing of acoustic and quantum excitations in open cavities: The perfect inverse filter

    Full text link
    The time-reversal mirror (TRM) prescribes the reverse playback of a signal to focalize an acoustic excitation as a Loschmidt echo. In the quantum domain, the perfect inverse filter (PIF) processes this signal to ensure an exact reversion provided that the excitation originated outside the cavity delimited by the transducers. We show that PIF takes a simple form when the initial excitation is created inside this cavity. This also applies to the acoustical case, where it corrects the TRM and improves the design of an acoustic bazooka. We solve an open chaotic cavity modeling a quantum bazooka and a simple model for a Helmholtz resonator, showing that the PIF becomes decisive to compensate the group velocities involved in a highly localized excitation and to achieve subwavelength resolution.Comment: 6 pages, 2 figure

    Semiclassical Theory of Time-Reversal Focusing

    Full text link
    Time reversal mirrors have been successfully implemented for various kinds of waves propagating in complex media. In particular, acoustic waves in chaotic cavities exhibit a refocalization that is extremely robust against external perturbations or the partial use of the available information. We develop a semiclassical approach in order to quantitatively describe the refocusing signal resulting from an initially localized wave-packet. The time-dependent reconstructed signal grows linearly with the temporal window of injection, in agreement with the acoustic experiments, and reaches the same spatial extension of the original wave-packet. We explain the crucial role played by the chaotic dynamics for the reconstruction of the signal and its stability against external perturbations.Comment: 4 pages, 1 figur

    Time Reversal Mirror and Perfect Inverse Filter in a Microscopic Model for Sound Propagation

    Get PDF
    Time reversal of quantum dynamics can be achieved by a global change of the Hamiltonian sign (a hasty Loschmidt daemon), as in the Loschmidt Echo experiments in NMR, or by a local but persistent procedure (a stubborn daemon) as in the Time Reversal Mirror (TRM) used in ultrasound acoustics. While the first is limited by chaos and disorder, the last procedure seems to benefit from it. As a first step to quantify such stability we develop a procedure, the Perfect Inverse Filter (PIF), that accounts for memory effects, and we apply it to a system of coupled oscillators. In order to ensure a many-body dynamics numerically intrinsically reversible, we develop an algorithm, the pair partitioning, based on the Trotter strategy used for quantum dynamics. We analyze situations where the PIF gives substantial improvements over the TRM.Comment: Submitted to Physica

    Tuning laser-induced bandgaps in graphene

    Get PDF
    Could a laser field lead to the much sought-after tunable bandgaps in graphene? By using Floquet theory combined with Green's functions techniques, we predict that a laser field in the mid-infrared range can produce observable bandgaps in the electronic structure of graphene. Furthermore, we show how they can be tuned by using the laser polarization. Our results could serve as a guidance to design opto-electronic nano-devices.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter

    Floquet interface states in illuminated three-dimensional topological insulators

    Get PDF
    Recent experiments showed that the surface of a three dimensional topological insulator develops gaps in the Floquet-Bloch band spectrum when illuminated with a circularly polarized laser. These Floquet-Bloch bands are characterized by non-trivial Chern numbers which only depend on the helicity of the polarization of the radiation field. Here we propose a setup consisting of a pair of counter-rotating lasers, and show that one-dimensional chiral states emerge at the interface between the two lasers. These interface states turn out to be spin-polarized and may trigger interesting applications in the field of optoelectronics and spintronics.Comment: 5 pages with 3 figures + supplemental materia

    Non-perturbative laser effects on the electrical properties of graphene nanoribbons

    Get PDF
    The use of Floquet theory combined with a realistic description of the electronic structure of illuminated graphene and graphene nanoribbons is developed to assess the emergence of non-adiabatic and non-perturbative effects on the electronic properties. Here, we introduce an efficient computational scheme and illustrate its use by applying it to graphene nanoribbons in the presence of both linear and circular polarization. The interplay between confinement due to the finite sample size and laser-induced transitions is shown to lead to sharp features on the average conductance and density of states. Particular emphasis is given to the emergence of the bulk limit response.Comment: 14 pages, 8 figures, to appear in J. Phys.: Condens. Matter, special issue on "Ultrafast and nonlinear optics in carbon nanomaterials
    • …
    corecore