The time-reversal mirror (TRM) prescribes the reverse playback of a signal to
focalize an acoustic excitation as a Loschmidt echo. In the quantum domain, the
perfect inverse filter (PIF) processes this signal to ensure an exact reversion
provided that the excitation originated outside the cavity delimited by the
transducers. We show that PIF takes a simple form when the initial excitation
is created inside this cavity. This also applies to the acoustical case, where
it corrects the TRM and improves the design of an acoustic bazooka. We solve an
open chaotic cavity modeling a quantum bazooka and a simple model for a
Helmholtz resonator, showing that the PIF becomes decisive to compensate the
group velocities involved in a highly localized excitation and to achieve
subwavelength resolution.Comment: 6 pages, 2 figure