397 research outputs found

    Synchronized flow and wide moving jams from balanced vehicular traffic

    Full text link
    Recently we proposed an extension to the traffic model of Aw, Rascle and Greenberg. The extended traffic model can be written as a hyperbolic system of balance laws and numerically reproduces the reverse λ\lambda shape of the fundamental diagram of traffic flow. In the current work we analyze the steady state solutions of the new model and their stability properties. In addition to the equilibrium flow curve the trivial steady state solutions form two additional branches in the flow-density diagram. We show that the characteristic structure excludes parts of these branches resulting in the reverse λ\lambda shape of the flow-density relation. The upper branch is metastable against the formation of synchronized flow for intermediate densities and unstable for high densities, whereas the lower branch is unstable for intermediate densities and metastable for high densities. Moreover, the model can reproduce the typical speed of the downstream front of wide moving jams. It further reproduces a constant outflow from wide moving jams, which is far below the maximum free flow. Applying the model to simulate traffic flow at a bottleneck we observe a general pattern with wide moving jams traveling through the bottleneck.Comment: 10 pages, 12 figure

    A multi-scale study on the bubble dynamics of cryogenic cavitation

    Full text link
    This study aims to construct a multi-scale cavitation model for unsteady cryogenic cavitation CFD. Many elementary physical processes of bubbles (i.e, nucleation, growth/shrink, evaporation/condensation, coalescence/fission, collapse, bubblebubble interaction, bubble-turbulence interaction, and so on) emerge in cryogenic cavitation where some of the processes have not been understood well. In this paper, we mainly focused the molecular processes in homogeneous liquid-vapor nucleation with noncondensable gas solution by using Molecular Dynamics (MD) method. Bubble nucleation in liquid oxygen including helium, nitrogen, or argon was simulated. Molecular interaction was given by Lennard-Jones potential, and basically, each potential parameter was defined so that a saturation curve obtained by MD data was consistent with an experimental value. In the case that helium was impurity, a bubble nucleus was formed by density fluctuation at a lower concentration while a cluster constituted with helium molecules formed a bubble nucleus at a higher concentration, and the nucleation point becomes closer to the saturation point of pure oxygen when helium molecules form clusters. On the other hand, in the case that nitrogen or argon was the impurity, the above-mentioned clustering was not observed clearly at a concentration where helium made clusters, and these impurities have weaker action to make clusters and cavitation bubble nuclei compared with helium.http://deepblue.lib.umich.edu/bitstream/2027.42/84285/1/CAV2009-final102.pd

    An Alternative Model of Amino Acid Replacement

    Full text link
    The observed correlations between pairs of homologous protein sequences are typically explained in terms of a Markovian dynamic of amino acid substitution. This model assumes that every location on the protein sequence has the same background distribution of amino acids, an assumption that is incompatible with the observed heterogeneity of protein amino acid profiles and with the success of profile multiple sequence alignment. We propose an alternative model of amino acid replacement during protein evolution based upon the assumption that the variation of the amino acid background distribution from one residue to the next is sufficient to explain the observed sequence correlations of homologs. The resulting dynamical model of independent replacements drawn from heterogeneous backgrounds is simple and consistent, and provides a unified homology match score for sequence-sequence, sequence-profile and profile-profile alignment.Comment: Minor improvements. Added figure and reference

    Collisions of F+ with Ne

    Get PDF
    Measurements of inelastic collisions of F+ with Ne have been made. Transitions between 3P and 1D terms of F+ are seen, with the inelastically scattered ions sharply focused in the forward direction. Potential energy curves of (FNe)+ have been calculated. The 3Σ and 3Π curves correlating to F+(3P) are repulsive, while the 1Σ correlating to F+(1D) is attractive. Several curve crossings are identified, where transitions occur through spin-orbit coupling. Scattering angles and differential cross sections have been calculated, and they show the presence of a ‘‘glory’’ (or halo) effect, which accounts for the forward scattering of ions

    Microscopic features of moving traffic jams

    Full text link
    Empirical and numerical microscopic features of moving traffic jams are presented. Based on a single vehicle data analysis, it is found that within wide moving jams, i.e., between the upstream and downstream jam fronts there is a complex microscopic spatiotemporal structure. This jam structure consists of alternations of regions in which traffic flow is interrupted and flow states of low speeds associated with "moving blanks" within the jam. Empirical features of the moving blanks are found. Based on microscopic models in the context of three-phase traffic theory, physical reasons for moving blanks emergence within wide moving jams are disclosed. Structure of moving jam fronts is studied based in microscopic traffic simulations. Non-linear effects associated with moving jam propagation are numerically investigated and compared with empirical results.Comment: 19 pages, 12 figure

    Single-vehicle data of highway traffic - a statistical analysis

    Full text link
    In the present paper single-vehicle data of highway traffic are analyzed in great detail. By using the single-vehicle data directly empirical time-headway distributions and speed-distance relations can be established. Both quantities yield relevant information about the microscopic states. Several fundamental diagrams are also presented, which are based on time-averaged quantities and compared with earlier empirical investigations. In the remaining part time-series analyses of the averaged as well as the single-vehicle data are carried out. The results will be used in order to propose objective criteria for an identification of the different traffic states, e.g. synchronized traffic.Comment: 12 pages, 19 figures, RevTe

    Macroscopic traffic models from microscopic car-following models

    Full text link
    We present a method to derive macroscopic fluid-dynamic models from microscopic car-following models via a coarse-graining procedure. The method is first demonstrated for the optimal velocity model. The derived macroscopic model consists of a conservation equation and a momentum equation, and the latter contains a relaxation term, an anticipation term, and a diffusion term. Properties of the resulting macroscopic model are compared with those of the optimal velocity model through numerical simulations, and reasonable agreement is found although there are deviations in the quantitative level. The derivation is also extended to general car-following models.Comment: 12 pages, 4 figures; to appear in Phys. Rev.
    corecore