2,167 research outputs found

    Quantum Operation Time Reversal

    Full text link
    The dynamics of an open quantum system can be described by a quantum operation, a linear, complete positive map of operators. Here, I exhibit a compact expression for the time reversal of a quantum operation, which is closely analogous to the time reversal of a classical Markov transition matrix. Since open quantum dynamics are stochastic, and not, in general, deterministic, the time reversal is not, in general, an inversion of the dynamics. Rather, the system relaxes towards equilibrium in both the forward and reverse time directions. The probability of a quantum trajectory and the conjugate, time reversed trajectory are related by the heat exchanged with the environment.Comment: 4 page

    Zero-Reachability in Probabilistic Multi-Counter Automata

    Full text link
    We study the qualitative and quantitative zero-reachability problem in probabilistic multi-counter systems. We identify the undecidable variants of the problems, and then we concentrate on the remaining two cases. In the first case, when we are interested in the probability of all runs that visit zero in some counter, we show that the qualitative zero-reachability is decidable in time which is polynomial in the size of a given pMC and doubly exponential in the number of counters. Further, we show that the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 in time which is polynomial in log(epsilon), exponential in the size of a given pMC, and doubly exponential in the number of counters. In the second case, we are interested in the probability of all runs that visit zero in some counter different from the last counter. Here we show that the qualitative zero-reachability is decidable and SquareRootSum-hard, and the probability of all zero-reaching runs can be effectively approximated up to an arbitrarily small given error epsilon > 0 (these result applies to pMC satisfying a suitable technical condition that can be verified in polynomial time). The proof techniques invented in the second case allow to construct counterexamples for some classical results about ergodicity in stochastic Petri nets.Comment: 20 page

    Conditions for compatibility of quantum state assignments

    Full text link
    Suppose N parties describe the state of a quantum system by N possibly different density operators. These N state assignments represent the beliefs of the parties about the system. We examine conditions for determining whether the N state assignments are compatible. We distinguish two kinds of procedures for assessing compatibility, the first based on the compatibility of the prior beliefs on which the N state assignments are based and the second based on the compatibility of predictive measurement probabilities they define. The first procedure leads to a compatibility criterion proposed by Brun, Finkelstein, and Mermin [BFM, Phys. Rev. A 65, 032315 (2002)]. The second procedure leads to a hierarchy of measurement-based compatibility criteria which is fundamentally different from the corresponding classical situation. Quantum mechanically none of the measurement-based compatibility criteria is equivalent to the BFM criterion.Comment: REVTEX 4, 19 pages, 1 postscript figur

    Probabilistic Timed Automata with Clock-Dependent Probabilities

    Get PDF
    Probabilistic timed automata are classical timed automata extended with discrete probability distributions over edges. We introduce clock-dependent probabilistic timed automata, a variant of probabilistic timed automata in which transition probabilities can depend linearly on clock values. Clock-dependent probabilistic timed automata allow the modelling of a continuous relationship between time passage and the likelihood of system events. We show that the problem of deciding whether the maximum probability of reaching a certain location is above a threshold is undecidable for clock-dependent probabilistic timed automata. On the other hand, we show that the maximum and minimum probability of reaching a certain location in clock-dependent probabilistic timed automata can be approximated using a region-graph-based approach.Comment: Full version of a paper published at RP 201

    Maximal-entropy random walk unifies centrality measures

    Full text link
    In this paper analogies between different (dis)similarity matrices are derived. These matrices, which are connected to path enumeration and random walks, are used in community detection methods or in computation of centrality measures for complex networks. The focus is on a number of known centrality measures, which inherit the connections established for similarity matrices. These measures are based on the principal eigenvector of the adjacency matrix, path enumeration, as well as on the stationary state, stochastic matrix or mean first-passage times of a random walk. Particular attention is paid to the maximal-entropy random walk, which serves as a very distinct alternative to the ordinary random walk used in network analysis. The various importance measures, defined both with the use of ordinary random walk and the maximal-entropy random walk, are compared numerically on a set of benchmark graphs. It is shown that groups of centrality measures defined with the two random walks cluster into two separate families. In particular, the group of centralities for the maximal-entropy random walk, connected to the eigenvector centrality and path enumeration, is strongly distinct from all the other measures and produces largely equivalent results.Comment: 7 pages, 2 figure

    The thermodynamics of urban population flows

    Get PDF
    Orderliness, reflected via mathematical laws, is encountered in different frameworks involving social groups. Here we show that a thermodynamics can be constructed that macroscopically describes urban population flows. Microscopic dynamic equations and simulations with random walkers underlie the macroscopic approach. Our results might be regarded, via suitable analogies, as a step towards building an explicit social thermodynamics

    Tableaux for Policy Synthesis for MDPs with PCTL* Constraints

    Full text link
    Markov decision processes (MDPs) are the standard formalism for modelling sequential decision making in stochastic environments. Policy synthesis addresses the problem of how to control or limit the decisions an agent makes so that a given specification is met. In this paper we consider PCTL*, the probabilistic counterpart of CTL*, as the specification language. Because in general the policy synthesis problem for PCTL* is undecidable, we restrict to policies whose execution history memory is finitely bounded a priori. Surprisingly, no algorithm for policy synthesis for this natural and expressive framework has been developed so far. We close this gap and describe a tableau-based algorithm that, given an MDP and a PCTL* specification, derives in a non-deterministic way a system of (possibly nonlinear) equalities and inequalities. The solutions of this system, if any, describe the desired (stochastic) policies. Our main result in this paper is the correctness of our method, i.e., soundness, completeness and termination.Comment: This is a long version of a conference paper published at TABLEAUX 2017. It contains proofs of the main results and fixes a bug. See the footnote on page 1 for detail

    The Effects on Toxicity of Circadian Patterning of Continuous Hepatic Artery Infusion

    Get PDF
    Long term continuous hepatic artery infusion of FUDR was carried out in 34 rats. In the animals who received a constant infusion schedule of 15mg/kg/day all died of toxicity with a mean survival of 9.3 days. If the pattern of the continuous infusion was changed so that over 60% of the infusion was given during the hours of 3pm to 9pm then all of the animals survived the 14 day infusion. If the maximum dose of infusion was changed so that 60% of the infusion was given at night from 3am to 9am the infusion became more toxic and all the animals died in a mean of 5.5 days. Pathologic sectioning of all the livers reflected the above outcomes with the greatest amount of hepatic necrosis in the animals on the night cycles. This study underscores the recent advances in chronobiology demonstrating that for continuous hepatic arterial infusions the timing of delivery is crucial in determining the toxicity

    Long-Range Navigation on Complex Networks using L\'evy Random Walks

    Full text link
    We introduce a strategy of navigation in undirected networks, including regular, random, and complex networks, that is inspired by L\'evy random walks, generalizing previous navigation rules. We obtained exact expressions for the stationary probability distribution, the occupation probability, the mean first passage time, and the average time to reach a node on the network. We found that the long-range navigation using the L\'evy random walk strategy, compared with the normal random walk strategy, is more efficient at reducing the time to cover the network. The dynamical effect of using the L\'evy walk strategy is to transform a large-world network into a small world. Our exact results provide a general framework that connects two important fields: L\'evy navigation strategies and dynamics on complex networks.Comment: 6 pages, 3 figure

    Probabilistic Guarantees for Safe Deep Reinforcement Learning

    Full text link
    Deep reinforcement learning has been successfully applied to many control tasks, but the application of such agents in safety-critical scenarios has been limited due to safety concerns. Rigorous testing of these controllers is challenging, particularly when they operate in probabilistic environments due to, for example, hardware faults or noisy sensors. We propose MOSAIC, an algorithm for measuring the safety of deep reinforcement learning agents in stochastic settings. Our approach is based on the iterative construction of a formal abstraction of a controller's execution in an environment, and leverages probabilistic model checking of Markov decision processes to produce probabilistic guarantees on safe behaviour over a finite time horizon. It produces bounds on the probability of safe operation of the controller for different initial configurations and identifies regions where correct behaviour can be guaranteed. We implement and evaluate our approach on agents trained for several benchmark control problems
    • …
    corecore