We introduce a strategy of navigation in undirected networks, including
regular, random, and complex networks, that is inspired by L\'evy random walks,
generalizing previous navigation rules. We obtained exact expressions for the
stationary probability distribution, the occupation probability, the mean first
passage time, and the average time to reach a node on the network. We found
that the long-range navigation using the L\'evy random walk strategy, compared
with the normal random walk strategy, is more efficient at reducing the time to
cover the network. The dynamical effect of using the L\'evy walk strategy is to
transform a large-world network into a small world. Our exact results provide a
general framework that connects two important fields: L\'evy navigation
strategies and dynamics on complex networks.Comment: 6 pages, 3 figure