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Abstract. Probabilistic timed automata are classical timed automata
extended with discrete probability distributions over edges. We introduce
clock-dependent probabilistic timed automata, a variant of probabilistic
timed automata in which transition probabilities can depend linearly on
clock values. Clock-dependent probabilistic timed automata allow the
modelling of a continuous relationship between time passage and the like-
lihood of system events. We show that the problem of deciding whether
the maximum probability of reaching a certain location is above a thresh-
old is undecidable for clock-dependent probabilistic timed automata. On
the other hand, we show that the maximum and minimum probabil-
ity of reaching a certain location in clock-dependent probabilistic timed
automata can be approximated using a region-graph-based approach.

1 Introduction

Reactive systems are increasingly required to satisfy a combination of quali-
tative criteria (such as safety and liveness) and quantitative criteria (such as
timeliness, reliability and performance). This trend has led to the development
of techniques and tools for the formal verification of both qualitative and quan-
titative properties. In this paper, we consider a formalism for real-time systems
that exhibit randomised behaviour, namely probabilistic timed automata (PTA)
[10,17]. PTAs extend classical Alur-Dill timed automata [4] with discrete proba-
bilistic branching over automata edges; alternatively a PTA can be viewed as a
Markov decision process [20] or a Segala probabilistic automaton [21] extended
with timed-automata-like clock variables and constraints over those clocks. PTAs
have been used previously to model case studies including randomised protocols
and scheduling problems with uncertainty [16,19], some of which have become
standard benchmarks in the field of probabilistic model checking.

We recall briefly the behaviour of a PTA: as time passes, the model stays
within a particular discrete state, and the values of its clocks increase at the
same rate; at a certain point in time, the model can leave the discrete state if
the current values of the clocks satisfy a constraint (called a guard) labelling one
of the probability distributions over edges leaving the state; then a probabilistic
choice as to which discrete state to then visit is made according to the chosen
edge distribution. In the standard presentation of PTAs, any dependencies be-
tween time and probabilities over edges must be defined by utilising multiple
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distributions enabled with different sets of clock values. For example, to model
the fact that a packet loss is more likely as time passes, we can use clock x to
measure time, and two distributions µ1 and µ2 assigning probability λ1 and λ2
(for λ1 < λ2), respectively, to taking edges leading to a discrete state corre-
sponding to packet loss, where the guard of µ1 is x ≤ c and the guard of µ2 is
x > c, for some constant c ∈ N. Hence, when the value of clock x is not more
than c, a packet loss occurs with probability λ1, otherwise it occurs with prob-
ability λ2. A more direct way of expressing the relationship between time and
probability would be letting the probability of making a transition to a discrete
state representing packet loss be dependent on the value of the clock, i.e., let
the value of this probability be equal to f(x), where f is an increasing function
from the values of x to probabilities. We note that such a kind of dependence of
discrete branching probabilities on values of continuous variables is standard in
the field of stochastic hybrid systems, for example in [1].

In this paper we consider such a formalism based on PTAs, in which all
probabilities used by edge distributions can be expressed as functions of values
of the clocks used by the model: the resulting formalism is called clock-dependent
probabilistic timed automata (cdPTA). We focus on a simple class of functions
from clock values to probabilities, namely those that can be expressed as sums
of continuous piecewise linear functions, and consider a basic problem in the
context of probabilistic model checking, namely probabilistic reachability: de-
termine whether the maximum (respectively, minimum) probability of reaching
a certain set of locations from the initial state is above (respectively, below) a
threshold. After introducing cdPTAs (in Section 2), our first result (in Section
3) is that the probabilistic reachability problem is undecidable for cdPTA with a
least three clocks. This result is inspired from recent related work on stochastic
timed Markov decision processes [2]. Furthermore, we give an example of cdPTA
with one clock for which the maximal probability of reaching a certain location
involves a particular edge being taken when the clock has an irrational value.
This suggests that classical techniques for partitioning the state space into a
finite number of equivalence classes on the basis of a fixed, rational-numbered
time granularity, such as the region graph [4] or the corner-point abstraction
[8], cannot be applied directly to the case of cdPTA to obtain optimal reach-
ability probabilities, because they rely on the fact that optimal choices can be
made either at or arbitrarily closely to clock values that are multiples of the
chosen rational-numbered time granularity. In Section 4, we present a conserva-
tive approximation method for cdPTA, i.e., maximum (respectively, minimum)
probabilities are bounded from above (respectively, from below) in the approx-
imation. This method is based on the region graph but uses concepts from the
corner-point abstraction to define transition distributions. We show that succes-
sive refinement of the approximation, obtained by increasing the time granular-
ity by a constant factor, does not lead to a more conservative approximation: in
practice, in many cases such a refinement can lead to a substantial improvement
in the computed probabilities, which we show using a small example.



2 Clock-Dependent Probabilistic Timed Automata

Preliminaries. We use R≥0 to denote the set of non-negative real numbers, Q
to denote the set of rational numbers and N to denote the set of natural num-
bers. A (discrete) probability distribution over a countable set Q is a function
µ : Q → [0, 1] such that

∑
q∈Q µ(q) = 1. For a function µ : Q → R≥0 we define

support(µ) = {q ∈ Q : µ(q) > 0}. Then for an uncountable set Q we define
Dist(Q) to be the set of functions µ : Q→ [0, 1], such that support(µ) is a count-
able set and µ restricted to support(µ) is a (discrete) probability distribution.
Given q ∈ Q, we use {q 7→ 1} to denote the distribution that assigns probability
1 to the single element q.

A probabilistic transition system (PTS) T = (S, s,Act , ∆) comprises the
following components: a set S of states with an initial state s ∈ S, a set Act of
actions, and a probabilistic transition relation ∆ ⊆ S × Act × Dist(S). The sets
of states, actions and the probabilistic transition relation can be uncountable.
Transitions from state to state of a PTS are performed in two steps: if the current
state is s, the first step concerns a nondeterministic selection of a probabilistic
transition (s, a, µ) ∈ ∆; the second step comprises a probabilistic choice, made
according to the distribution µ, as to which state to make the transition (that
is, a transition to a state s′ ∈ S is made with probability µ(s′)). We denote such

a completed transition by s
a,µ−−→ s′. We assume that for each state s ∈ S there

exists some (s, a, µ) ∈ ∆.

An infinite run of the PTS T is an infinite sequence of consecutive transitions

r = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · (i.e., the target state of one transition is the source
state of the next). Similarly, a finite run of T is a finite sequence of consecutive

transitions r = s0
a0,µ0−−−→ s1

a1,µ1−−−→ · · · an−1,µn−1−−−−−−−→ sn. We use InfRunsT to denote
the set of infinite runs of T , and FinRunsT the set of finite runs of T . If r is
a finite run, we denote by last(r) the last state of r. For any infinite run r and
i ∈ N, let r(i) = si be the (i + 1)th state along r. Let InfRunsT (s) refer to the
set of infinite runs of T commencing in state s ∈ S.

A strategy of a PTS T is a function σ mapping every finite run r ∈ FinRunsT

to a distribution in Dist(∆) such that (s, a, µ) ∈ support(σ(r)) implies that
s = last(r). From [11, Lemma 4.10], without loss of generality we can assume
henceforth that strategies map to distributions assigning positive probability to
finite sets of elements, i.e., strategies σ for which |support(σ(r))| is finite for
all r ∈ FinRunsT . For any strategy σ, let InfRunsσ denote the set of infinite
runs resulting from the choices of σ. For a state s ∈ S, let InfRunsσ(s) =
InfRunsσ ∩ InfRunsT (s). Given a strategy σ and a state s ∈ S, we define the
probability measure Prσs over InfRunsσ(s) in the standard way [14].

Given a set SF ⊆ S, define 3SF = {r ∈ InfRunsT : ∃i ∈ N s.t. r(i) ∈ SF }
to be the set of infinite runs of T such that some state of SF is visited along
the run. Given a set Σ′ ⊆ Σ of strategies, we define the maximum value over Σ′

with respect to SF as Pmax
T ,Σ′(SF ) = supσ∈Σ′ Prσs (3SF ). Similarly, the minimum

value over Σ′ with respect to SF is defined as Pmin
T ,Σ′(SF ) = infσ∈Σ′ Prσs (3SF ).

The maximal reachability problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≥, >} and



λ ∈ [0, 1] is to decide whether Pmax
T ,Σ′(SF )�λ. Similarly, the minimal reachability

problem for T , SF ⊆ S, Σ′ ⊆ Σ, � ∈ {≤, <} and λ ∈ [0, 1] is to decide whether
Pmin
T ,Σ′(SF ) � λ.

Clock-Dependent Probabilistic Timed Automata. Let X be a finite set
of real-valued variables called clocks, the values of which increase at the same
rate as real-time and which can be reset to 0. A function v : X → R≥0 is referred
to as a clock valuation and the set of all clock valuations is denoted by RX≥0. For

v ∈ RX≥0, t ∈ R≥0 and X ⊆ X , we use v+t to denote the clock valuation that
increments all clock values in v by t, and v[X:=0] to denote the clock valuation
in which clocks in X are reset to 0.

For a set Q, a distribution template d : RX≥0 → Dist(Q) gives a distribution
over Q for each clock valuation. In the following, we use notation d[v], rather
than d(v), to denote the distribution corresponding to distribution template d
and clock valuation v. Let Dist(Q) be the set of distribution templates over Q.

The set CC (X ) of clock constraints over X is defined as the set of conjunctions
over atomic formulae of the form x ∼ c, where x ∈ X , ∼∈ {<,≤,≥, >}, and
c ∈ N. A clock valuation v satisfies a clock constraint ψ, denoted by v |= ψ, if ψ
resolves to true when substituting each occurrence of clock x with v(x).

A clock-dependent probabilistic timed automaton (cdPTA) P =
(L, l̄,X , inv , prob) comprises the following components: a finite set L of
locations with an initial location l̄ ∈ L; a finite set X of clocks; a function
inv : L → CC (X ) associating an invariant condition with each location; a set
prob ⊆ L × CC (X ) × Dist(2X × L) of probabilistic edges. A probabilistic edge
(l, g, p) ∈ prob comprises: (1) a source location l; (2) a clock constraint g, called
a guard ; and (3) a distribution template p with respect to pairs of the form
(X, l′) ∈ 2X × L (i.e., pairs consisting of a set X of clocks to be reset and a
target location l′).

The behaviour of a cdPTA takes a similar form to that of a standard prob-
abilistic timed automaton [10,17]: in any location time can advance as long as
the invariant holds, and the choice as to how much time elapses is made nonde-
terministically; a probabilistic edge can be taken if its guard is satisfied by the
current values of the clocks and, again, the choice as to which probabilistic edge
to take is made nondeterministically; for a taken probabilistic edge, the choice
of which clocks to reset and which target location to make the transition to is
probabilistic. The key difference with cdPTAs is that the distribution used to
make this probabilistic choice depends on the probabilistic edge taken and on
the current clock valuation.

Example 1. In Figure 1 we give an example of a cdPTA modelling a simple robot
that must reach a certain geographical area and then carry out a particular task.
The usual conventions for the graphical representation of timed automata are
used in the figure. Black squares denote the distributions of probabilistic edges,
and expressions on probabilities used by distribution templates are written with
a grey background on their outgoing arcs. The robot can be in one of four
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Fig. 1. A cdPTA modelling a simple robot example.

geographical areas, which can be thought of as cells in a 2 × 2 grid, each of
which corresponds to a cdPTA location. The robot begins in the top-left cell
(corresponding to location TL), and its objective is to reach the bottom-right
cell (location BR). The robot can move either to the top-right cell (location
TR), or to the bottom-left cell (location BL), then to the bottom-right cell. In
each cell, the robot must wait a certain amount of time (1 time units in the
top cells and 2 time units in the bottom-left cell) before attempting to leave
the cell (for example, to recharge solar batteries), after which it can spend at
most 1 time unit attempting to leave the cell. With a certain probability, the
attempt to leave the cell will fail, and the robot must wait before trying to
leave the cell again; the more time is dedicated to leaving the cell, the more
likely the robot will succeed. Although passing through the top-right cell is not
slower than passing through the bottom-left cell, the probability of leaving the
cell successfully increases at a slower rate than in other cells (representing, for
example, terrain in which the robot finds it difficult to navigate). On arrival in
the bottom-right cell, the robot successfully carries out its task with a probability
that is inversely proportional to the total time elapsed (for example, the robot
could be transporting medical supplies, the efficacy of which may be inversely
proportional to the time elapsed). The clock x is used to represent the amount of
time used by the robot in its attempt to move from cell to cell, whereas the clock
y represents the total amount of time since the start of the robot’s mission. If the
clock y reaches its maximum amount cmax, then the mission fails (as denoted
by the edge to the location denoted by 7, which is available in locations TL,
TR, BL and BR, as indicated by the dashed box). The objective of the robot’s
controller is to maximise the probability of reaching the location denoted by
X. Note that there is a trade-off between dedicating more time to movement
between the cells, which increases the probability of successful navigation and
therefore progress towards the target point, and spending less time on the overall
mission, which increases the probability of carrying out the required task at the
target point. ut



A state of a cdPTA is a pair comprising a location and a clock valuation
satisfying the location’s invariant condition, i.e., (l, v) ∈ L × RX≥0 such that
v |= inv(l). In any state (l, v), either a certain amount of time δ ∈ R≥0 elapses,
or a probabilistic edge is traversed. If time elapses, then the choice of δ requires
that the invariant inv(l) remains continuously satisfied while time passes. The
resulting state after this transition is (l, v+δ). A probabilistic edge (l′, g, p) ∈
prob can be chosen from (l, v) if l = l′ and it is enabled, i.e., the clock constraint g
is satisfied by v. Once a probabilistic edge (l, g, p) is chosen, a set of clocks to reset
and a successor location are selected at random, according to the distribution
p[v].

We make a number of assumptions concerning the cdPTA models considered.
Firstly, we restrict our attention to cdPTAs for which it is always possible to
take a probabilistic edge, either immediately or after letting time elapse. This
condition holds generally for PTA models in practice [16]. A sufficient syntac-
tic condition for this property has been presented formally in [12]. Secondly,
we consider cdPTAs that feature invariant conditions that prevent clock values
from exceeding some bound: formally, for each location l ∈ L, we have that
inv(l) contains a constraint of the form x ≤ c or x < c for each clock x ∈ X .
Thirdly, we assume that all possible target states of probabilistic edges satisfy
their invariants: for all probabilistic edges (l, g, p) ∈ prob, for all clock valuations
v ∈ RX≥0 such that v |= g, and for all (X, l′) ∈ 2X×L, we have that p[v](X, l′) > 0
implies v[X := 0] |= inv(l′). Finally, we assume that any clock valuation that
satisfies the guard of a probabilistic edge also satisfies the invariant of the source
location: this can be achieved, without changing the underlying semantic PTS,
by replacing each probabilistic edge (l, g, p) ∈ prob by (l, g ∧ inv(l), p).

Let 0 ∈ RX≥0 be the clock valuation which assigns 0 to all clocks in X . The

semantics of the cdPTA P = (L, l̄,X , inv , prob) is the PTS [[P]] = (S, s,Act , ∆)
where:

– S = {(l, v) : l ∈ L and v ∈ RX≥0 s.t. v |= inv(l)} and s = {(l̄,0)};
– Act = R≥0 ∪ prob;

– ∆ =
−→
∆ ∪ ∆̂, where

−→
∆ ⊆ S×R≥0×Dist(S) and ∆̂ ⊆ S×prob×Dist(S) such

that:
•
−→
∆ is the smallest set such that ((l, v), δ, {(l, v + δ) 7→ 1}) ∈

−→
∆ if there

exists δ ∈ R≥0 such that v + δ′ |= inv(l) for all 0 ≤ δ′ ≤ δ;
• ∆̂ is the smallest set such that ((l, v), (l, g, p), µ) ∈ ∆̂ if

1. v |= g;
2. for any (l′, v′) ∈ S, we have µ(l′, v′) =

∑
X∈Reset(v,v′) p[v](X, l′),

where Reset(v, v′) = {X ⊆ X | v[X := 0] = v′}.

When considering maximum and minimum values for cdPTAs, we hence-

forth consider strategies that alternate between transitions from
−→
∆ (time elapse

transitions) and transitions from ∆̂ (probabilistic edge transitions). Formally, a

cdPTA strategy σ is a strategy such that, for a finite run r ∈ FinRuns [[P]] that

has s
a,µ−−→ s′ as its final transition, either (s, a, µ) ∈

−→
∆ and support(σ(r)) ∈ ∆̂, or

(s, a, µ) ∈ ∆̂ and support(σ(r)) ∈
−→
∆ . We write Σ for the set of cdPTA strategies
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Fig. 2. A one-clock cdPTA for which the maximum probability is attained by a time
delay corresponding to an irrational number.

of [[P]]. Given a set F ⊆ L of locations, subsequently called target locations, we
let SF = {(l, v) ∈ S : l ∈ F}. Let � ∈ {≥, >}, � ∈ {≤, <} and λ ∈ [0, 1]: then
the maximal (respectively, minimal) reachability problem for cdPTA is to decide
whether Pmax

[[P]],Σ(SF ) � λ (respectively, Pmin
[[P]],Σ(SF ) � λ).

Piecewise Linear Clock Dependencies. In this paper, we concentrate on
a particular subclass of distribution templates based on continuous piecewise
linear functions. Let x ∈ X be a clock and p = (l, g, p) ∈ prob be a probabilistic
edge. Let Ipx be the interval containing the values of x of clock valuations that
satisfy g: formally Ipx = {v(x) ∈ R≥0 : v ∈ RX≥0 s.t. v |= g}. For example, for
g = (x ≥ 3)∧(x < 5)∧(y ≤ 8), we have Ipx = [3, 5) and Ipy = [0, 8]. We equip each

probabilistic edge p = (l, g, p) ∈ prob and e = (X, l′) ∈ 2X ×L with a continuous
piecewise linear function fp,ex with domain Ipx for each clock x ∈ X . Formally,
we consider a partition Ip,ex of Ipx (i.e.,

⋃
I∈Ip,ex I = Ipx and I ∩ I ′ = ∅ for each

I, I ′ ∈ Ip,ex such that I 6= I ′), and sets {cp,ex,I}I∈Ip,ex and {dp,ex,I}I∈Ip,ex of constants

in Q such that: (a) for every I ∈ Ip,ex and γ ∈ I, we have fp,ex (γ) = cp,ex,I +dp,ex,I ·γ;
(b) fp,ex is continuous (i.e., for each γ ∈ Ipx , we have limζ→γ f

p,e
x (ζ) = fp,ex (γ)).

We make the following assumptions for each probabilistic edge p ∈ prob: (1) all
endpoints of intervals in Ip,ex are natural numbers, for all clocks x ∈ X and
e ∈ 2X × L; (2)

∑
x∈X f

p,e
x (v(x)) ∈ [0, 1] for each e ∈ 2X × L and v ∈ RX≥0

such that v |= g; (3)
∑
e∈2X×L

∑
x∈X f

p,e
x (v(x)) = 1 for each v ∈ RX≥0 such that

v |= g. Then the probabilistic edge p is piecewise linear if, for each e ∈ 2X × L
and each v ∈ RX≥0 such that v |= g, we have p[v](e) =

∑
x∈X f

p,e
x (v(x)). We

assume henceforth that all probabilistic edges of cdPTAs are piecewise linear.

Example 2. Standard methods for the analysis of timed automata typically con-
sist of a finite-state system that represents faithfully the original model. In par-
ticular, the region graph [4] and the corner-point abstraction [8] both involve the
division of the state space according to a fixed, rational-numbered granularity.
The example of a one-clock cdPTA P of Figure 2 shows that such an approach
cannot be used for the exact computation of optimal reachability probabilities
in cdPTAs, because optimality may be attained when the clock has an irrational
value. For an example of the formal description of a piecewise linear probabilistic
edge, consider the probabilistic edge from location C, which we denote by pC:

then we have IpC,(∅,D)
x = IpC,(∅,E)

x = {[0, 1)}, with c
pC,(∅,D)
x,[0,1) = 1, d

pC,(∅,D)
x,[0,1) = − 1

2 ,



c
pC,(∅,E)
x,[0,1) = 0, and d

pC,(∅,E)
x,[0,1) = 1

2 . Now consider the maximum probability of reach-

ing location D (that is, Pmax
[[P]],Σ(S{D})). Intuitively, the longer the cdPTA remains

in location A, the lower the probability of making a transition to location E from
A, but the higher the probability of making a transition to E from B and C. Note
that, after A is left, the choice resulting in the maximum probability of reaching
D is to take the outgoing transitions from B and C as soon as possible (delaying
in B and C will increase the value of x, therefore increasing the probability of
making a transition to E). Denoting by δ the amount of time elapsed in A, the
maximum probability of reaching D is equal to δ(1 − δ)(1 − δ

2 ), which (within

the interval [0, 1)) reaches its maximum at 1−
√
3
3 . Hence, this example indicates

that abstractions based on the optimality of choices made at (or arbitrarily close
to) rational-numbered clock values (such as the region graph or corner-point ab-
straction) do not yield exact analysis methods for cdPTAs. ut

3 Undecidability of Maximal Reachability for cdPTAs

Theorem 1. The maximal reachability problem is undecidable for cdPTAs with
at least 3 clocks.

Proof (sketch). We proceed by reducing the non-halting problem for two-counter
machines to the maximal reachability problem for cdPTAs. The reduction has
close similarities to a reduction presented in [2].

A two-counter machine M = (L, C) comprises a set L = {`1, ..., `n} of in-
structions and a set C = {c1, c2} of counters. The instructions are of the following
form (for 1 ≤ i, j, k ≤ n and l ∈ {1, 2}):

1. `i : cl := cl + 1; goto `j (increment cl);
2. `i : cl := cl − 1; goto `j (decrement cl);
3. `i : if (cl > 0) them goto `j else goto `k (zero check cl);
4. `n : HALT (halting instruction).

A configuration (`, v1, v2) of a two-counter machine comprises an instruction `
and values v1 and v2 of counters c1 and c2, respectively. A run of a two-counter
machine consists of a finite or infinite sequence of configurations, starting from
configuration (`1, 0, 0), and where subsequent configurations are successively gen-
erated by following the rule specified in the associated configuration. A run is
finite if and only if the final instruction visited along the run is `n (the halting in-
struction). The halting problem for two-counter machines concerns determining
whether the unique run of the two-counter machine is finite, and is undecidable
[18]; hence the non-halting problem (determining whether the unique run of the
two-counter machine is infinite) is also undecidable.

Consider a two-counter machine M. We reduce the non-halting problem for
M to the maximal reachability problem in the following way. We construct
a cdPTA PM with three clocks {x1, x2, x3} by considering modules for each
form that the instructions of a two-counter machine can take. On entry to each
module, we have that x1 = 1

2c1 , x2 = 1
2c2 and x3 = 0. The module for simulating
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Fig. 3. The cdPTA module for simulating an increment instruction for counter c1.

an increment instruction is shown in Figure 3. In location `i, there is a delay of
1 − 1

2c1 , and hence the values of the clocks on entry to location B are x1 = 0,
x2 = 1

2c2 +1− 1
2c1 mod 1 and x3 = 1− 1

2c1 . A nondeterministic choice is then made
concerning the amount of time that elapses in location B: note that this amount
must be in the interval (0, 1

2c1 ). In order to correctly simulate the increment of
counter c1, the choice of delay in location B should be equal to 1

2c1+1 . On leaving
location B, a probabilistic choice is made: the rightward outcome corresponds
to continuing the simulation of the two-counter machine, whereas the downward
outcome corresponds to checking that the delay in location B was correctly 1

2c1+1 .

We write the delay in location B as 1
2c1+1 + ε, where − 1

2c1+1 < ε < 1
2c1+1 : hence,

for a correct simulation of the increment of c1, we require that ε = 0.
Consider the case in which the downward outcome (from the outgoing proba-

bilistic edge of location B) is taken: then the cdPTA fragment from location D has
the role of checking whether ε = 0. Note that, after entering location D, no time
elapses in locations D and E (as enforced by the reset of x2 to zero and the invari-
ant condition x2 = 0), and hence both clocks x1 and x3 retain the same values
that they had when location B was left. We show that the probability of reaching
the target location G from location D is 1

4 − ε
2, and hence equal to 1

4 if and only
if ε = 0. To see that the probability of reaching G from D is 1

4 − ε
2, observe that

the probability is equal to 1
2 (x1 + x3) = 1

2 ( 1
2c1+1 + ε + (1 − 1

2c1+1 ) + ε) = 1
2 + ε

multiplied by 1− 1
2 (x1+x3) = 1

2−ε, i.e., equal to 1
4−ε

2. Hence the probability of
reaching location G from location D is equal to 1

4 if and only if ε = 0 (otherwise,
the probability is less than 1

4 ).
The module for simulating a decrement instruction is shown in Figure 4. In

a similar manner to the cdPTA fragment in Figure 3 for the simulation of an
increment instruction, the only nondeterministic choice made is with regard to
the amount of time spent in location `i, which is denoted by δ. For the correct
simulation of the decrement instruction, δ should equal 1− 1

2c1−1 . The rightward
outcome is taken from the probabilistic edge leaving location `i corresponds to
the continuation of the simulation of the two-counter machine: hence, on entry
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Fig. 4. The cdPTA module for simulating a decrement instruction for counter c1.

to location B, we have x1 = 0, x2 = 1
2c2 +δ and x3 = δ; then, on entry to location

`j , we have x1 = δ, x2 = 1
2c2 and x3 = 0.

Let δ = 1− 1
2c1−1 +ε. For the correct simulation of the decrement instruction,

we require that ε = 0. The downward outcome from the probabilistic edge leaving
location `i corresponds to checking that ε = 0, and takes a similar form to the
analogous downward edge of the cdPTA fragment for the increment instruction,
as shown in Figure 3. Note that, on entry to location C, we have that x1 =
1− 1

2c1 + ε, x2 = 0 and x3 = 1− 1
2c1−1 + ε. Then, on entry to location D, we have

that x1 = 0, x2 = 1
2c1 −ε and x3 = 1− 1

2c1 . As no time elapses in locations D and
E, we have that target location F is then reached with probability 1

2 (x2 + x3) =
1
2 ( 1

2c1 − ε+1− 1
2c1 ) = 1

2 + ε
2 multiplied by the probability 1− 1

2 (x2 +x3) = 1
2 −

ε
2 ,

which equals 1
4 −

ε2

4 . Hence we conclude that the probability of reaching location
F from location C is equal to 1

4 if and only if ε = 0.

Finally, the module for a zero test instruction `i : if (c1 >
0) then goto `j else goto `k is shown in Figure 5. The module is almost iden-
tical to that of [3], and we present it here only for completeness. After entry
to location `i, two probabilistic edges are enabled: the rightward one is taken
if c1 = 0 (i.e., if x1 = 1

20 = 1), whereas the leftward one is taken otherwise.
Both probabilistic edges involve an outcome leading to a target location with
probability 1

4 : if this outcome is not taken, the cdPTA fragment then proceeds
to location `j or `j , depending on which probabilistic edge was taken.

Given the construction of a cdPTA simulating the two-counter machine using
the modules described above, we can now proceed to show Theorem 1. The
reasoning is the same as that of Lemma 5 of [2]. If the two-counter machine
halts in k steps, and the strategy of the cdPTA correctly simulates the two-
counter machine the probability of reaching a target location will be 1

2 ·
1
4 +

( 1
2 )2 · 14 + ... + ( 1

2 )k · 14 < 1
4 . If the two-counter machine halts in k steps, and

the strategy of the cdPTA does not correctly simulate the two-counter machine,
then this means that the probability of reaching a target location is strictly
less than that corresponding to correct simulation, given that deviation from
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Fig. 5. The cdPTA module for simulating a zero-test instruction for counter c1.

simulation of a certain step corresponds to reaching the target locations with
probability strictly less than 1

4 in that step. Now consider the case in which the
two-counter machine does not halt: in this case, faithful simulation in the cdPTA
corresponds to reaching target locations with probability

∑∞
i=1( 1

2 )i · 1
4 = 1

4 ,
whereas unfaithful simulation in the cdPTA corresponds to reaching the target
locations with probability

∑∞
i=1( 1

2 )i · γi where γi ≤ 1
4 for all i ∈ N and γj <

1
4

for at least one j ∈ N, and hence
∑∞
i=1( 1

2 )i · γi < 1
4 . Therefore the two-counter

machine does not halt if and only if there exists a strategy in the constructed
cdPTA that reaches the target locations with probability at least 1

4 , concluding
the proof of Theorem 1. ut

4 Approximation of Reachability Probabilities

We now consider the approximation of maximal and minimal reachability prob-
abilities of cdPTAs. Our approach is to utilise concepts from the corner-point
abstraction [8]. However, while the standard corner-point abstraction is a finite-
state system that extends the classical region graph by encoding corner points
within states, the states of our finite-state system correspond to regions, and
we use corners of regions only to define available distributions. Furthermore, in
contrast to the widespread use of the corner-point abstraction in the context
of weighted (or priced) timed automata (see [7] for a survey), and in line with
the undecidability results presented in Section 3, our variant of the corner-point
abstraction does not result in a finite-state system that can be used to obtain a
quantitative measure that is arbitrarily close to the actual one: in the context
of cdPTAs, we will present a method that approximates maximal and minimal
reachability properties, and show that successive refinement of regions leads to
a more accurate approximation.

First we define regions and corner points. Let P = (L, l̄,X , inv , prob) be a
cdPTA, which we assume to be fixed throughout this section, and let M ∈ N
denote the upper bound on clocks in P. We choose k ∈ N, which we will refer to
as the (time) granularity, and let [k] = { ck : c ∈ N} be the set of multiples of 1

k .
A k-region (h, [X0, ..., Xn]) over X comprises:

1. a function h : X → ([k] ∩ [0,M ]) assigning a multiple of 1
k no greater than

M to each clock and



2. a partition [X0, ..., Xn] of X , where Xi 6= ∅ for all 1 ≤ i ≤ n and h(x) = M
implies x ∈ X0 for all x ∈ X .

Given clock valuation v ∈ RX≥0 and granularity k, the k-region R =
(h, [X0, ..., Xn]) containing v (written v ∈ R) satisfies the following conditions:

1. bk · v(x)c=k · h(x) for all clocks x ∈ X ;
2. v(x)=h(x) for all clocks x ∈ X0;
3. k · v(x) − bk · v(x)c ≤ k · v(y) − bk · v(y)c if and only if x ∈ Xi and y ∈ Xj

with i ≤ j, for all clocks x, y ∈ X .

Note that, rather than considering regions delimited by valuations corresponding
to natural numbers, in our definition regions are delimited by valuations corre-
sponding to multiples of 1

k . We use Regsk to denote the set of k-regions. For
R,R′ ∈ Regsk and clock constraint ψ ∈ CC (X ), we say that R′ is a ψ-satisfying
time successor of R if there exist v ∈ R and δ ∈ R≥0 such that (v+δ) ∈ R′ and
(v+δ′) |= ψ for all 0 ≤ δ′ ≤ δ. For a given k-region R ∈ Regsk, we let R[X := 0]
be the k-region that corresponds to resetting clocks in X to 0 from clock valua-
tions in R (that is, R[X := 0] contains valuations v[X := 0] for v ∈ R). We use
R0 to denote the k-region that contains the valuation 0.

A corner point α = 〈ai〉0≤i≤n ∈ ([k]∩ [0,M ])n of k-region (h, [X0, ..., Xn]) is
defined by:

ai(x) =

{
h(x) if x ∈ Xj with j ≤ i
h(x) + 1

k if x ∈ Xj with j > i .

Note that a k-region (h, [X0, ..., Xn]) is associated with n+ 1 corner points. Let
CP(R) be the set of corner points of k-region R. Given granularity k, we let
CornerPointsk be the set of all corner points.

Next we define the clock-dependent region graph with granularity k as the
finite-state PTS Ak = (Sk, s,Actk, Γk), where Sk = L×Regsk, s = (l̄, R0), Actk =

{τ} ∪ (CornerPointsk × prob), and Γk =
−→
Γk ∪ Γ̂k where

−→
Γk ⊆ Sk × {τ} ×Dist(Sk)

and Γ̂k ⊆ Sk × CornerPointsk × prob × Dist(Sk) such that:

–
−→
Γk is the smallest set of transitions such that ((l, R), τ, {(l, R′) 7→ 1}) ∈

−→
Γk

if (l, R′) is an inv(l)-satisfying time successor of (l, R);

– Γ̂k is the smallest set such that ((l, R), (α, (l, g, p)), ν) ∈ Γ̂k if:

1. R |= g;
2. α ∈ CP(R);
3. for any (l′, R′) ∈ Sk, we have that ν(l′, R′) =

∑
X∈Reset(R,R′) p[α](X, l′),

where Reset(R,R′) = {X ⊆ X | R[X := 0] = R′}.

Hence the clock-dependent region graph of a cdPTA encodes corner points
within (probabilistic-edge-based) transitions, in contrast to the corner-point ab-
straction, which encodes corner points within states. In fact, a literal application
of the standard corner-point abstraction, as presented in [7], does not result in a
conservative approximation, which we now explain with reference to Example 2.



Example 2 (continued). Recall that the states of the corner-point abstraction
comprise a location, a region and a corner point of the region, and transitions
maintain consistency between corner points of the source and target states. For
example, for the cdPTA of Figure 2, consider the state (A, 0 < x < 1, x = 1),
where 0 < x < 1 is used to refer to the state’s region component and x = 1 is used
to refer to the state’s corner point. Then the probabilistic edge leaving location
A is enabled (because the state represents the situation in which clock x is in
the interval (0, 1) and arbitrarily close to 1). Standard intuition on the corner-
point abstraction (adapted from weights in [7] to probabilities in distribution
templates in this paper) specifies that, when considering probabilities of outgoing
probabilistic edges, the state (A, 0 < x < 1, x = 1) should be associated with
probabilities for which x = 1. Hence the probability of making a transition
to location B is 1, and the target corner-point-abstraction state is (B, 0 < x <
1, x = 1). However, now consider the probabilistic edge leaving location B: in this
case, given that the corner point under consideration is x = 1, the probability
of making a transition to location C is 0, and hence the target location D is
reachable with probability 0. Furthermore, consider the state (A, 0 < x < 1, x =
0): in this case, if the probabilistic edge leaving location A is taken, then location
B is reached with probability 0, and hence location D is again reachable with
probability 0. We can conclude that such a direct application of the corner-point
abstraction to cdPTA is not a conservative approximation of the cdPTA, because
the maximum reachability probability in the corner-point abstraction is 0, i.e.,
less than the maximum reachability probability of the cdPTA (which we recall is

1−
√
3
3 ). Instead, in our definition of the clock-dependent region graph, we allow

“inconsistent” corner points to be used in successive transitions: for example,
from location A, the outgoing probabilistic edge can be taken using the value
of x corresponding to the corner point x = 1; then, from locations B and C,
the outgoing probabilistic edge can be taken using corner point x = 0. Hence
maximum probability of reaching the target location D, with k = 1, is 1. ut

Analogously to the case of cdPTA strategies, we consider strategies of clock-

dependent region graphs that alternate between transitions from
−→
Γk (time elapse

transitions) and transitions from Γ̂k (probabilistic edge transitions). Formally,
a region graph strategy σ is a strategy of Ak such that, for a finite run r ∈
FinRunsAk that has (l, R)

a,ν−−→ (l′, R′) as its final transition, either ((l, R), a, ν) ∈
−→
Γk and support(σ(r)) ∈ Γ̂k, or ((l, R), a, ν) ∈ Γ̂k and support(σ(r)) ∈

−→
Γk. We

write Πk for the set of region graph strategies of Ak.
Let F ⊆ L be the set of target locations, which we assume to be fixed

in the following. Recall that SF = {(l, v) ∈ L × RX≥0 : l ∈ F} and let

RegsFk = {(l, R) ∈ Sk : l ∈ F}. The following result specifies that the maxi-
mum (minimum) probability for reaching target locations from the initial state
of a cdPTA is bounded from above (from below, respectively) by the corre-
sponding maximum (minimum, respectively) probability in the clock-dependent
region graph with granularity k. Similarly, the maximum (minimum) probability
computed in the region graph of granularity k is an upper (lower, respectively)
bound on the maximum (minimum, respectively) probability computed in the



Fig. 6. Maximum probability of reaching location X in the cdPTA of Figure 1.

region graph of granularity 2k (we note that this result can be adapted to hold
for granularity ck rather than 2k, for any c ∈ N \ {0, 1}). The proof of the
proposition can be found in the appendix.

Proposition 1.

1. Pmax
[[P]],Σ(SF ) ≤ Pmax

Ak,Πk
(RegsFk ), Pmin

[[P]],Σ(SF ) ≥ Pmin
Ak,Πk

(RegsFk ).

2. Pmax
A2k,Π2k

(RegsF2k) ≤ Pmax
Ak,Πk

(RegsFk ), Pmin
A2k,Π2k

(RegsF2k) ≥ Pmin
Ak,Πk

(RegsFk ).

Example 2 (continued). We give the intuition underlying Proposition 1 using
Example 2 (Figure 2), considering the maximum probability of reaching the
target location D. When k = 1, as described above, the maximum probability of
reaching D is 1. Instead, for k = 2, the maximum probability of reaching location
D corresponds to taking the probabilistic edge from location A for the corner
point x = 1

2 corresponding to the 2-region 0 < x < 1
2 and the probabilistic edges

from locations B and C for corner point x = 0, again for the 2-region 0 < x < 1
2

i.e., the probability is 1
2 . With granularity k = 4, the maximum probability of

reaching location D is 0.328125, obtained by taking the probabilistic edge from
A for the corner point x = 1

2 , and the probabilistic edges from B and C for
corner point x = 1

4 , where the 4-region used in all cases is 1
4 < x < 1

2 . ut

Example 1 (continued). In Figure 6 we plot the values of the maximum proba-
bility of reaching location X in the example of Figure 1 for various values of cmax

and k, obtained by encoding the clock-dependent region graph as a finite-state
PTS and using Prism [15]. For this example, the difference between the proba-
bilities obtained from low values of k is substantial. We note that the number of
states of the largest instance that we considered here (for k = 16 and cmax = 15)
was 140174. ut

5 Conclusion

In this paper we presented cdPTAs, an extension of PTAs in which probabilities
can depend on the values of clocks. We have shown that a basic probabilistic



model checking problem, maximal reachability, is undecidable for cdPTAs with
at least three clocks. One direction of future research could be attempting to im-
prove these results by considering cdPTAs with one or two clocks, or identifying
other kinds of subclass of cdPTAs for which for which probabilistic reachability
is decidable: for example, we conjecture decidability can be obtained for cdP-
TAs in which all clock variables are reset after utilising a probabilistic edge that
depends non-trivially on clock values. Furthermore, we conjecture that qualita-
tive reachability problems (whether there exists a strategy such that the target
locations are reached with probability strictly greater than 0, or equal to 1) are
decidable (and in exponential time) for cdPTAs for which the piecewise linear
functions are bounded away from 0 by a region graph construction. The case
of piecewise linear functions that can approach arbitrarily closely to 0 requires
more care (because non-forgetful cycles, in the terminology of [5], can lead to
convergence of a probability used along a cdPTA path to 0). We also presented
a conservative overapproximation method for cdPTAs. At present this method
gives no guarantees on the distance of the obtained bounds to the actual opti-
mal probability: future work could address this issue, by extending the region
graph construction from a PTS to a stochastic game (to provide upper and lower
bounds on the maximum/minimum probability in the manner of [13]), or by con-
sidering approximate relations (by generalising the results of [9,6] from Markov
chains to PTSs).

Acknowledgments. The inspiration for cdPTA arose from a discussion with
Patricia Bouyer on the corner-point abstraction. Thanks also to Holger Her-
manns, who expressed interest in a cdPTA-like formalism in a talk at Dagstuhl
Seminar 14441.
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A Proof of Proposition 1

A.1 Preliminaries

Given setQ, let {µi}i∈I ⊆ Dist(Q) be a set of distributions and {λi}i∈I be a set of
weights such that λi > 0 for all i ∈ I and

∑
i∈I λi = 1. Then we write

⊕
i∈I λi ·µi

to refer to the distribution over Q such that (
⊕

i∈I λi · µi)(q) =
∑
i∈I λi · µi(q)

for each q ∈ Q.
Let≡⊆ S×S be an equivalence relation over S. We say that≡ respects S′ ⊆ S

if S′ is the union of states contained in some set of equivalence classes of ≡. Given



two distributions µ, µ′ over S, we write µ ≡ µ′ if
∑
s∈C µ(s) =

∑
s∈C µ

′(s) for
all equivalence classes C of ≡. A combined transition from state s ∈ S is a pair
({(s, ai, µi)}i∈I , {λi}i∈I) such that (s, ai, µi) ∈ ∆ and λi > 0 for all i ∈ I, and∑
i∈I λi = 1. Let A ⊆ Act be a set of actions. Then a probabilistic simulation

respecting ≡ and A is a relation �⊆ S×S such that s � t implies that (1) s ≡ t,
and (2) for each transition (s, a, µ) ∈ ∆, there exists a combined transition
({(t, ai, µi)}i∈I , {λi}i∈I) such that µ ≡

⊕
i∈I λi · µi, {ai}i∈I ⊆ A if a ∈ A, and

{ai}i∈I ⊆ Act \A if a ∈ Act \A.1

Next, we consider strategies that alternate between actions in a certain set
A ⊆ Act and actions in the complement set Act \A. Formally, an A-alternating

strategy σ is a strategy such that, for finite run r ∈ FinRunsT that has s
a,µ−−→ s′

as its final transition, then {a′ ∈ Act : (s, a′, µ) ∈ support(σ(r))} ⊆ A if a ∈
Act \ A, and {a′ ∈ Act : (s, a′, µ) ∈ support(σ(r))} ⊆ Act \ A if a ∈ A. Let ΣTA
be the set of A-alternating strategies of T ; when the context is clear, we write
simply ΣA rather than ΣTA .

Given two PTSs T1 = (S1, s1,Act1, ∆1) and T2 = (S2, s2,Act2, ∆2), their
disjoint union is defined as the PTS (S1 ] S2, ,Act1 ] Act2, ∆1 ] ∆2) (where
the initial state is irrelevant and is hence omitted). The following result is es-
sentially identical to [11, Lemma 3.17, Lemma 3.18] (which in turn rely on [21,
Theorem 8.6.1]).

Proposition 2. [11] Let A1 ⊆ Act1, let A2 ⊆ Act2, and let ≡ be an equivalence
relation over S1 ] S2 that respects SF . If s1 � s2 for a probabilistic simulation
respecting ≡ and A1 ]A2, then Pmax

T1,ΣA1
(SF ) ≤ Pmax

T2,ΣA2
(SF ) and Pmin

T1,ΣA1
(SF ) ≥

Pmin
T2,ΣA2

(SF ).

A.2 Approximating a cdPTA by the clock-dependent region graph
with granularity k

In order to show part (1) of Proposition 1, we first consider the following inter-
mediate lemmata. The first lemma specifies that the sets of clocks that, when
reset to 0, are used to transform valuation v to valuation v′ are the same as
the sets of clocks used to transform the k-region containing v to the k-region
containing the valuation v′.

Lemma 1. Let M,k ∈ N and v, v′ ∈ RX≥0 such that, for each clock x ∈ X , either
v′(x) = v(x) or v′(x) = 0. Using R,R′ ∈ Regsk to denote the k-regions such that
v ∈ R and v′ ∈ R′, we have Reset(v, v′) = Reset(R,R′).

Proof. Let X0
v be the set of clocks that are equal to 0 in v, and let X0

v′ be the
set of clocks that are equal to 0 in v′. Similarly, let X0

R be the set of clocks
that are equal to 0 in valuations in R, and let X0

R′ be the set of clocks that

1 Our notion of probabilistic simulation respecting an equivalence relation is stronger
than that of probabilistic simulation of [21]. Also note that we do not require actions
to be matched in the definition of probabilistic simulation respecting ≡, although
we do require that matching actions are either all in A or all in Act \A.



are equal to 0 in valuations in R′. By the definition of k-regions, for any clock
x ∈ X , v(x) = 0 if and only if v′′(x) = 0 for all v′′ ∈ R, and v′(x) = 0 if and
only if v′′(x) = 0 for all v′′ ∈ R′. Hence X0

v = X0
R and X0

v′ = X0
R′ . Given that

either v′(x) = v(x) or v′(x) = 0 for each x ∈ X , we have that X ∈ Reset(v, v′)
if and only if X0

v′ \ X0
v ⊆ X ⊆ X0

v′ . Similarly, X ∈ Reset(R,R′) if and only
if X0

R′ \ X0
R ⊆ X ⊆ X0

R′ . Therefore we have that X ∈ Reset(v, v′) if and only
if X0

v′ \ X0
v ⊆ X ⊆ X0

v′ if and only if X0
R′ \ X0

R ⊆ X ⊆ X0
R′ if and only if

X ∈ Reset(R,R′). Hence Reset(v, v′) = Reset(R,R′). ut

A set of weights is a finite set {θi}i∈I such that θi ∈ (0, 1] for each i ∈ I and∑
i∈I θi = 1. In the following, we use an interpretation of valuations and corner

points as points in R|X |≥0 -space, allowing the use of operations such as θ · v and
v + v′ (interpreted as (θ · v)(x) = θ · v(x) and (v + v′)(x) = v(x) + v′(x) for all
clocks x ∈ X , respectively).

Lemma 2. Let v ∈ RX≥0, let k ∈ N and let R ∈ Regsk be the unique k-region
such that v ∈ R. Then there exists a set of weights {θα}α∈CP(R) such that v =∑
α∈CP(R) θα · α.

Proof. Observe that the convex hull of corner points CP(R) corresponds to a
superset of the valuations contained in R. Hence, given that v ∈ R, we have
that v is in the set of valuations induced by the convex hull of CP(R), and hence
there exists {θα}α∈CP(R) with the required property. ut

In the following, for a state (l, v) ∈ S of [[P]], we use 〈[l, v]〉k to denote the
unique pair (l′, R) ∈ L× Regsk such that l = l′ and v ∈ R.

Lemma 3. Let k ∈ N, let R ∈ Regsk be the k-region such that v ∈ R, and let
(l, g, p) ∈ prob be a probabilistic edge such that v |= g. Then there exists a set of
weights {θα}α∈CP(R) such that, for any (X, l′) ∈ 2X × L:

p[v](X, l′) =
∑

α∈CP(R)

θα · p[α](X, l′) .

Proof. Let {θα}α∈CP(R) be the set of weights such that v =
∑
α∈CP(R) θα · α,

which exists by Lemma 2. Let e = (X, l′) ∈ 2X × L. For clock x ∈ X , we use
Iv to denote the interval of the partition Ip,ex such that v(x) ∈ Iv, and use cp,ex,Iv
and dp,ex,Iv to denote the constants such that fp,ex (γ) = cp,ex,Iv + dp,ex,Iv · γ if γ ∈ Iv.



Then we have:

p[v](e) =
∑
x∈X

fp,ex (v(x))

=
∑
x∈X

(cp,ex,Iv + dp,ex,Iv · v(x))

=
∑
x∈X

(cp,ex,Iv + dp,ex,Iv ·
∑

α∈CP(R)

θα · α(x))

=
∑
x∈X

cp,ex,Iv +
∑
x∈X

dp,ex,Iv ·
∑

α∈CP(R)

θα · α(x)

=
∑

α∈CP(R)

θα
∑
x∈X

cp,ex,Iv +
∑

α∈CP(R)

θα
∑
x∈X

dp,ex,Iv · α(x) (from
∑

α∈CP(R)

θα = 1)

=
∑

α∈CP(R)

θα(
∑
x∈X

cp,ex,Iv +
∑
x∈X

dp,ex,Iv · α(x)) .

Recall that Iv has natural-numbered endpoints, and that α(x) is a rational
number. Note that it may be the case that Iv is open or half-open, and hence
may not include α(x). Given that fp,ex is a continuous function, we have that
fp,ex (γ) = cp,ex,Iv + dp,ex,Iv · γ for all γ in the closure of Iv. Given that α(x) must
belong to the closure of Iv, we conclude the following:

∑
α∈CP(R)

θα(
∑
x∈X

cp,ex,Iv +
∑
x∈X

dp,ex,Iv · α(x)) =
∑

α∈CP(R)

θα
∑
x∈X

fp,ex (α(x))

=
∑

α∈CP(R)

θα · p[α](e) .

Hence we have shown that p[v](e) =
∑
α∈CP(R) θα · p[α](e), which concludes the

proof. ut

Lemma 4. Let (l, v) ∈ S be a state, let k ∈ N, and let R ∈ Regsk be the k-region
such that v ∈ R. For each transition ((l, v), (l, g, p), µ) ∈ ∆ of [[P]], there exists
a set of transitions {(〈[l, v]〉k, (α, (l, g, p)), να)}α∈CP(R) ⊆ Γk of Ak and weights
{θα}α∈CP(R) such that, for each state (l′, v′) ∈ S:

µ(l′, v′) =
∑

α∈CP(R)

θα · να(〈[l′, v′]〉k) .

Proof. Let {θα}α∈CP(R) be the set of weights such that v =
∑
α∈CP(R) θα · α,

which exists by Lemma 2, and let R,R′ ∈ Regsk be the k-regions such that



v ∈ R and v ∈ R′. By definition of [[P]], we have:

µ(l′, v′) =
∑

X∈Reset(v,v′)

p[v](X, l′)

=
∑

X∈Reset(v,v′)

∑
α∈CP(R)

θα · p[α](X, l′) (by Lemma 3)

=
∑

X∈Reset(R,R′)

∑
α∈CP(R)

θα · p[α](X, l′) (by Lemma 1)

=
∑

α∈CP(R)

θα
∑

X∈Reset(R,R′)

p[α](X, l′)

=
∑

α∈CP(R)

θα · νi(〈[l′, v′]〉k) .

ut

The next lemma follows from standard non-probabilistic reasoning on the
region graph.

Lemma 5. Let (l, v) ∈ S be a state, and let k ∈ N. For each tran-
sition ((l, v), δ, {(l, v + δ) 7→ 1}) ∈ ∆ of [[P]], there exists a transition
(〈[l, v]〉k, τ, {〈[l, v + δ]〉k 7→ 1}) ∈ Γk of Ak.

The following lemma specifies that, for any transition of [[P]], any two distinct
states within its distribution’s support set belong to different k-regions.

Lemma 6. Let (l, v) ∈ S be a state, let k ∈ N, and let ((l, v), (l, g, p), µ) ∈
∆ be a transition of [[P]]. For each pair (l1, v1), (l2, v2) ∈ support(µ) such that
(l1, v1) 6= (l2, v2), we have 〈[l1, v1]〉k 6= 〈[l2, v2]〉k.

Proof. Let (l1, v1), (l2, v2) ∈ support(µ) such that (l1, v1) 6= (l2, v2). First observe
that if l1 6= l2 then trivially 〈[l1, v1]〉k 6= 〈[l2, v2]〉k. Now consider the case in which
l1 = l2 and v1 6= v2. we must have v1 6= v2. Note that v1 = v[X1 := 0] and
v2 = v[X2 := 0] for clock sets X1, X2 ⊆ X . Hence v1 and v2 differ only in terms
of which clocks are equal to 0. Intuitively, by the definition of k-regions, any
two valuations that differ only in terms of which clocks are equal to 0 belong
to different k-regions. For completeness, we now explain this formally. Denote
the sets of clocks that are equal to 0 in v1 by X ′1 and in v2 by X ′2 (note that
X1 ⊆ X ′1, X2 ⊆ X ′2 and that X ′1 6= X ′2 because v1 6= v2). Let the k-region
component of 〈[l1, v1]〉k be denoted by (h1, [X1,0, X1,1, ..., X1,n1 ]) and let the k-
region component of 〈[l2, v2]〉k be denoted by (h2, [X2,0, X2,1, ..., X2,n2 ]). Given
that X ′1 6= X ′2, either there exists clock x ∈ X ′1 \ X ′2 such that h1(x) = 0 and
x ∈ X1,0 but either h2(x) 6= 0 or x 6∈ X2,0, or there exists clock x ∈ X ′2 \ X ′1
such that h2(x) = 0 and x ∈ X2,0 but either h1(x) 6= 0 or x 6∈ X1,0. Hence we
have either h1 6= h2 or X1,0 6= X2,0, and therefore 〈[l1, v1]〉k 6= 〈[l2, v2]〉k. ut

Lemma 6 specifies that, for each transition ((l, v), a, µ) ∈ ∆ of [[P]] and for
each (l′, R) ∈ Sk, there exists at most one valuation v′ ∈ R such that (l′, v′) ∈
support(µ). If such a valuation v′ exists, we set vµ,(l′,R) = v′, otherwise vµ,(l′,R)

can be set to an arbitrary valuation. From this fact, together with Lemma 4 and
Lemma 5, we obtain the following lemma.



Lemma 7. Let (l, v) ∈ S be a state, and let k ∈ N. For each
transition ((l, v), a, µ) ∈ ∆ of [[P]], there exists a combined transition
({(〈[l, v]〉k, ai, νi)}i∈I , {λi}i∈I) of Ak such that, for each (l′, R′) ∈ Sk, we have:

1. µ(l′, vµ,(l′,R′)) =
∑
i∈I λi · νi(l′, R′).

2.
∑
v′∈R′ µ(l′, v′) =

∑
i∈I λi · νi(l′, R′).

Proof. We first consider part (1). Let R ∈ Regsk be the unique region such that
v ∈ R. We consider the following two cases.

Case a ∈ prob. Let p = a. By Lemma 4, there exist
{((l, R), (α, p), να)}α∈CP(R) ⊆ Γk of Ak and weights {θα}α∈CP(R) such that
µ(l′, vµ,(l′,R′)) =

∑
α∈CP(R) θα · να(〈[l′, vµ,(l′,R′)]〉k). Hence we let I = CP(R) and

λα = θα for each α ∈ CP(R), concluding that µ(l′, vµ,(l′,R′)) =
∑
i∈I λi ·νi(l′, R′).

Case a ∈ R≥0. Let δ = a. Note that, by definition of [[P]], for the unique
(l′, R′) ∈ Sk such that l = l′ and v + δ ∈ R′, we must have vµ,(l′,R′) =
v + δ, i.e., µ(l′, vµ,(l′,R′)) = µ(l′, v + δ) = 1. By Lemma 5, there exists
((l, R), τ, {〈[l, v + δ]〉k 7→ 1}) ∈ Γk: hence we let |I| = 1 and let {λi}i∈I be the set
containing a single weight equal to 1. Then we conclude that µ(l′, vµ,(l′,R′)) =
µ(l′, v + δ) = 1 = {〈[l, v + δ]〉k 7→ 1}(〈[l, v + δ]〉k) =

∑
i∈I λi · νi(l′, R′).

Part (2) of the lemma then follows from the fact that, for (l′, R′) ∈ Sk
such that there exists a valuation v′ ∈ R′ with (l′, v′) ∈ support(µ), we have∑
v′′∈R′ µ(l′, v′′) = µ(l′, vµ,(l′,R′)). ut

Consider equivalence ≡⊆ (S]Sk)2 over the states of the disjoint union of [[P]]
and Ak defined as the smallest equivalence satisfying the following conditions:

– for states (l, v), (l′, v′) ∈ S, we have (l, v) ≡ (l′, v′) if 〈[l, v]〉k = 〈[l′, v′]〉k (i.e.,
l = l′, and v and v′ belong to the same k-region in Regsk);

– for (l, v) ∈ S, (l′, R) ∈ Sk, we have (l, v) ≡ (l′, R) if 〈[l, v]〉k = (l′, R) (i.e.,
l = l′ and v belongs to R).

Then the following corollary is a direct consequence of part (2) of Lemma 7.

Corollary 1. Let (l, v) ∈ S be a state, and let k ∈ N. For each
transition ((l, v), a, µ) ∈ ∆ of [[P]], there exists a combined transition
({(〈[l, v]〉k, ai, νi)}i∈I , {λi}i∈I) of Ak such that µ ≡

⊕
i∈I λi ·νi and either ai = τ

for all i ∈ I if a ∈ R≥0, and {ai}i∈I ⊆ CornerPointsk × prob otherwise.

We now proceed to the proof of part (1) of Proposition 1.

Proof (of part (1) of Proposition 1). Consider the relation �⊆ (S]Sk)2 such that
� is the smallest relation satisfying the following property: for (l, v) ∈ S, (l′, R) ∈
Sk, we have (l, v) � (l′, R) if 〈[l, v]〉k = (l′, R). By Corollary 1, � is a probabilistic
simulation respecting ≡ and {τ} ∪ R≥0. Then, by Proposition 2, we have that

Pmax
[[P]],ΣR≥0

(SF ) ≤ Pmax
Ak,Σ{τ}(Regs

F
k ) and Pmin

[[P]],ΣR≥0
(SF ) ≥ Pmin

Ak,Σ{τ}(Regs
F
k ). Not-

ing that Σ = ΣR≥0
and Πk = Σ{τ}, we have that Pmax

[[P]],Σ(SF ) ≤ Pmax
Ak,Πk

(RegsFk )

and Pmin
[[P]],Σ(SF ) ≥ Pmin

Ak,Πk
(RegsFk ). ut



A.3 Approximating granularity 2k by granularity k

For 2k-region R ∈ Regs2k and k-region R′ ∈ Regsk, we write R ⊆ R′ if every
valuation that is contained in R is also contained in R′ (i.e., if {v ∈ RX≥0 : v ∈
R} ⊆ {v ∈ RX≥0 : v ∈ R′}). Note that, for a given 2k-region R ∈ Regs2k there is
exactly one k-region R′ ∈ Regsk such that R ⊆ R′. In the following, given the
2k-region R, we use [R]k to denote the unique k-region such that R ⊆ [R]k. We
now adapt Lemma 1 to the case of 2k-regions and k-regions: that is, the sets of
clocks that, when reset to 0, are used to transform 2k-region R to 2k-region R′

are the same as the sets of clocks used to transform the k-region containing the
2k-region R to the k-region containing the 2k-region R′. The proof of the lemma
proceeds in an analogous manner to that of Lemma 1, and is therefore omitted.

Lemma 8. Let k ∈ N and let R2k, R
′
2k ∈ Regs2k such that R′2k = R2k[X := 0]

for some X ⊆ X . Using Rk, R
′
k ∈ Regsk to denote the unique k-regions such that

R2k ⊆ Rk and R′2k ⊆ R′k, we have Reset(R2k, R
′
2k) = Reset(Rk, R

′
k).

The following result specifies that every corner point of R ∈ Regs2k is either
a corner point of [R]k or can be obtained from a weighted combination of corner
points of [R]k.

Lemma 9. Let k ∈ N and let R ∈ Regs2k. For each corner point α ∈ CP(R),
there exist a set of weights {θα′}α′∈CP([R]k) such that α =

∑
α′∈CP([R]k)

θα′ · α′.

Proof. Note that the convex hull of corner points in CP([R]k) is a superset of
the convex hull of corner points in CP(R). Hence, any corner point α ∈ CP(R) is
in the set of valuations induced by the convex hull of CP([R]k), and hence there
exists the required {θα′}α′∈CP([R]k) such that α =

∑
α′∈CP([R]k)

θα′ · α′. ut

We note that the corner points of R ∈ Regs2k are either also corner points of
the unique R′ ∈ Regsk such that R ⊆ R′, or they are mid-points of edges of the
polyhedron induced by the convex hull of the corner points of R′.

Lemma 9 allows us to state the following lemma (which is an analogue of
Lemma 3).

Lemma 10. Let k ∈ N, let R ∈ Regs2k, let (l, g, p) ∈ prob be a probabilistic edge
such that R |= g, and let α ∈ CP(R) be a corner point of R. Then there exists a
set of weights {θα′}α′∈CP([R]k) such that, for any (X, l′) ∈ 2X × L, we have:

p[α](X, l′) =
∑

α′∈CP([R]k)

θα′ · p[α′](X, l′) .

Proof. By Lemma 9, it is possible that α ∈ CP([R]k), in which case we let θα = 1
and trivially we have:

p[α](X, l′) = θα · p[α](X, l′) =
∑

α′∈CP([R]k)

θα′ · p[α′](X, l′) .



Now consider the case in which α 6∈ CP([R]k). We proceed in a similar manner
to the proof of Lemma 3. By Lemma 9, we have the existence of a set of weights
{θα′}α′∈CP([R]k) such that such that α =

∑
α′∈CP([R]k)

θα′ · α′. Let e = (X, l′) ∈
2X × L. For clock x ∈ X , we define Iα as the interval of the partition Ip,ex
such that α(x) ∈ Iα, and use cp,ex,Iα and dp,ex,Iα to denote the constants such that

fp,ex (γ) = cp,ex,Iα + dp,ex,Iα · γ if γ ∈ Iα. Then we have:

p[α](e) =
∑
x∈X

fp,ex (α(x))

=
∑
x∈X

(cp,ex,Iα + dp,ex,Iα · α(x))

=
∑
x∈X

(cp,ex,Iα + dp,ex,Iα ·
∑

α′∈CP([R]k)

θα′ · α′(x))

=
∑
x∈X

cp,ex,Iα +
∑
x∈X

dp,ex,Iα ·
∑

α′∈CP([R]k)

θα′ · α′(x)

=
∑

α′∈CP([R]k)

θα′
∑
x∈X

cp,ex,Iα +
∑

α′∈CP([R]k)

θα′
∑
x∈X

dp,ex,Iα · α
′(x)

=
∑

α′∈CP([R]k)

θα′(
∑
x∈X

cp,ex,Iα +
∑
x∈X

dp,ex,Iα · α
′(x))

=
∑

α′∈CP([R]k)

θα′
∑
x∈X

fp,ex (α′(x))

=
∑

α′∈CP([R]k)

θα′ · p[α′](e) ,

(where the fifth equation follows from
∑
α′∈CP([R]k)

θα′ = 1, and the penultimate
equation follows from the fact that fp,ex is a continuous function, as in the proof
of Lemma 3) which concludes the proof. ut

Lemma 11. Let k ∈ N and R ∈ Regs2k. For each transition
((l, R), (α, (l, g, p)), ν) ∈ Γ2k of A2k, there exists a set of transitions
{(l, [R]k), (α′, (l, g, p)), να′)}α′∈CP([R]k) ⊆ Γk of Ak and weights {θα′}α′∈CP([R]k)

such that, for each state (l′, R′) ∈ S2k, we have:

ν(l′, R′) =
∑

α′∈CP([R]k)

θα′ · να′(l′, [R′]k) .

Proof. We proceed in a similar manner to the proof of Lemma 4. Let
{θα′}α′∈CP([R]k) be the set of weights such that α =

∑
α′∈CP([R]k)

θα′ · α′, which

exists by Lemma 9. Then for each (l′, R′) ∈ S2k, by the definition of A2k, we



have:

ν(l′, R′) =
∑

X∈Reset(R,R′)

p[α](X, l′)

=
∑

X∈Reset(R,R′)

∑
α′∈CP([R]k)

θα′ · p[α′](X, l′) (by Lemma 10)

=
∑

X∈Reset([R]k,[R′]k)

∑
α′∈CP([R]k)

θα′ · p[α′](X, l′) (by Lemma 8)

=
∑

α′∈CP([R]k)

θα′ ·
∑

X∈Reset([R]k,[R′]k)

p[α′](X, l′)

=
∑

α′∈CP([R]k)

θα′ · νi(l′, [R′]k) .

ut

The next lemma considers time-successor transitions of the region graphs for
granularity k and 2k: as it relies on standard non-probabilistic reasoning on the
region graphs, we omit its proof.

Lemma 12. Let k ∈ N and let (l, R) ∈ S2k be a state of A2k. For each

transition ((l, R), τ, {(l, R′) 7→ 1}) ∈
−→
Γ2k of A2k, there exists a transition

(l, [R]k), τ, {(l′, [R′]k) 7→ 1}) ∈
−→
Γk of Ak.

The following lemma is an analogue of Lemma 6, applied to the case of
k-regions and 2k-regions.

Lemma 13. Let (l, R) ∈ Regs2k be a state of the region graph with granularity

2k, and let ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k be a transition of A2k. For each pair
(l1, R1), (l2, R2) ∈ support(ν) such that (l1, R1) 6= (l2, R2), we have (l1, [R1]k) 6=
(l2, [R2]k).

Proof. Let (l1, R1), (l2, R2) ∈ support(ν) such that (l1, R1) 6= (l2, R2). If l1 6= l2
then trivially (l1, [R1]k) 6= (l2, [R2]k). Now consider the case in which l1 = l2
and R1 6= R2. Note that R1 = R[X1 := 0] and R2 = R[X2 := 0]. Let X ′1
and X ′2 be the set of clocks that are equal to 0 in R1 and R2, respectively,
and note that X ′1 6= X ′2. Then [R1]k = (h1, [X1,0, X1,1..., X1,n1

]) and [R2]k =
(h2, [X2,0, X2,1..., X2,n2

]) have the following properties: either there exists clock
x ∈ X ′1 \X ′2 such that h1(x) = 0 and x ∈ X1,0 but either h2(x) 6= 0 or x 6∈ X2,0,
or there exists clock x ∈ X ′2 \X ′1 such that h2(x) = 0 and x ∈ X2,0 but either
h1(x) 6= 0 or x 6∈ X1,0. Hence we have (l1, [R1]k) 6= (l2, [R2]k). ut

Given ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k and (l′, R′) ∈ Sk, Lemma 13 specifies
that there exists at most one 2k-region R′′ such that (l′, R′′) ∈ support(ν) and
R′′ ⊆ R′. In the case in which such a 2k-region R′′ exists, we let Rν,(l′,R′) = R′′,
otherwise we can set Rν,(l′,R′) be equal to an arbitrary 2k-region. From this fact,
together with Lemma 11 and Lemma 12, we obtain the following lemma. Its
proof is similar to that of Lemma 7, and hence we omit it.



Lemma 14. Let (l, R) ∈ Sk be a state of the region graph with granularity 2k.

For each transition ((l, R), (α, (l, g, p)), ν) ∈ Γ̂2k of A2k, there exists a combined
transition ({(l, [R]k, ai, νi)}i∈I , {λi}i∈I) of Ak such that, for each (l′, R′) ∈ Sk,
we have:

1. ν(l′, Rν,(l′,R′)) =
∑
i∈I λi · νi(l′, R′).

2.
∑
R′′∈Regs2k s.t. [R′′]k=R′

ν(l′, R′′) =
∑
i∈I λi · νi(l′, R′).

Consider equivalence ≡⊆ (S2k ] Sk)2 over the states of the disjoint union of
A2k and Ak defined as the smallest equivalence satisfying the following condi-
tions:

– for states (l, R), (l′, R′) ∈ S2k, we have (l, R) ≡ (l′, R′) if l = l′, and [R]k =
[R′]k (i.e., R and R′ are contained in the same k-region in Regsk);

– for (l, R) ∈ S2k, (l′, R′) ∈ Sk, (l, R) ≡ (l′, R′) if l = l′ and [R]k = R′ (i.e., R
is contained in R′).

We then obtain the following corollary from part (2) of Lemma 14.

Corollary 2. Let (l, R) ∈ S2k be a state of A2k. For each tran-
sition ((l, R), a, ν) ∈ Γ2k of A2k, there exists a combined transition
({(l, [R]k), ai, νi)}i∈I , {λi}i∈I) of Ak such that ν ≡

⊕
i∈I λi · νi(l′, R′), ai = τ

for all i ∈ I if a = τ and {ai}i∈I ⊆ CornerPointsk × prob otherwise.

We now proceed to the proof of part (2) of Proposition 1.

Proof (of part (2) of Proposition 1). Consider the relation �⊆ (S2k ] Sk)2 such
that � is the smallest relation satisfying: for (l, R) ∈ S2k, (l′, R′) ∈ Sk, (l, R) �
(l′, R′) if (l, [R]k) = (l′, R′). By Corollary 2, we have that � is a probabilistic
simulation respecting ≡ and {τ}. Then, by Proposition 2, we have that:

Pmax

A2k,Σ
A2k
{τ}

(RegsF2k) ≤ Pmax

Ak,Σ
Ak
{τ}

(RegsFk )

Pmin

A2k,Σ
A2k
{τ}

(RegsF2k) ≥ Pmin

Ak,Σ
Ak
{τ}

(RegsFk ) .

Noting that Π2k = ΣA2k

{τ} and Πk = ΣAk{τ}, we have that Pmax
A2k,Π2k

(RegsF2k) ≤
Pmax
Ak,Πk

(RegsFk ) and Pmin
A2k,Π2k

(RegsF2k) ≥ Pmin
Ak,Πk

(RegsFk ). ut
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