583 research outputs found

    Electron microscopy study of CeOx–Pd/α-Al2O3 catalysts for methane dry reforming

    Get PDF
    We have investigated the interaction between Pd and Ce in a 0.47 wt % CeOx–Pd 1 wt %/ -Al2O3 catalyst that is used in the reforming reaction of CH4 with CO2. The freshly reduced catalyst was characterized by various electron microscopy techniques, such as elemental mapping, Z-contrast imaging, and electron energy-loss spectroscopy to understand the role of Ce on a microscopic scale. The high spatial resolution elemental mapping indicates that CeOx is located in close proximity of the palladium nanoparticles. High-resolution lattice images and energy-loss spectra obtained in the vicinity of the Pd particles show an anisotropic distribution of CeOx crystallites limited to the interface region between Pd and the substrate but not covering the surface of the Pd nanoparticles. Energy-loss near edge fine structure of Pd M edges reveals that the Pd nanoparticles are not oxidized.Fil: Moreno, M. S.. Comisión Nacional de Energía Atómica. Centro Atómico Bariloche; ArgentinaFil: Wang, Feiya. National Institute for Nanotechnology; CanadáFil: Malac, M.. National Institute for Nanotechnology; CanadáFil: Kasama, T.. University of Cambridge; Reino UnidoFil: Gigola, Carlos Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Costilla, Ignacio Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Bahía Blanca. Planta Piloto de Ingeniería Química. Universidad Nacional del Sur. Planta Piloto de Ingeniería Química; ArgentinaFil: Sánchez, M. D.. Universidad Nacional del Sur. Departamento de Física; Argentin

    Direct measurement of the charge distribution along a biased carbon nanotube bundle using electron holography

    Get PDF
    Nanowires and nanotubes can be examined in the transmission electron microscope under an applied bias. Here we introduce a model-independent method, which allows the charge distribution along a nanowire or nanotube to be measured directly from the Laplacian of an electron holographic phase image. We present results from a biased bundle of carbon nanotubes, in which we show that the charge density increases linearly with distance from its base, reaching a value of similar to 0.8 electrons/nm near its tip. (C) 2011 American Institute of Physics. [doi:10.1063/1.3598468

    Non-adiabatic spin torque investigated using thermally activated magnetic domain wall dynamics

    Get PDF
    Using transmission electron microscopy, we investigate the thermally activated motion of domain walls (DWs) between two positions in permalloy (Ni80Fe20) nanowires at room temperature. We show that this purely thermal motion is well described by an Arrhenius law, allowing for a description of the DW as a quasi-particle in a 1D potential landscape. By injecting small currents, the potential is modified, allowing for the determination of the non-adiabatic spin torque: the non-adiabatic coefficient is 0.010 +/- 0.004 for a transverse DW and 0.073 +/- 0.026 for a vortex DW. The larger value is attributed to the higher magnetization gradients present

    Magnetic properties of ilmenite-hematite single crystals from the Ecstall pluton near Prince Rupert, British Columbia

    Get PDF
    Paleomagnetic studies of the 91 Ma Ecstall pluton and other Cretaceous plutons of British Columbia imply large northward tectonic movements (>2000 km) may have occurred during the tectonic evolution of western North America. However, more recent studies have shown that the eastern edge of the Ecstall pluton experienced considerable mineralogical changes as younger Eocene plutons, such as the ∼58 Ma Quottoon Pluton, were emplaced along its margins. We investigated changes in the rock magnetic properties associated with this reheating event by examining isolated grains of intergrown ilmenite and hematite, the primary paleomagnetic recorder in the Ecstall pluton. Measurements of hysteresis properties, low-temperature remanence, and room temperature isothermal remanent magnetization acquisition and observations from magnetic force microscopy and off-axis electron holography indicate that samples fall into three groups. The groups are defined by the presence of mineral microstructures that are related to distance from the Quotoon plutonic complex. The two groups closest to the Quottoon Pluton contain magnetite within hematite and ilmenite lamellae. Reheating of the Ecstall pluton led to an increase in coercivity and magnetization, as well as to development of mixed phase hysteresis. These results indicate that shallow paleomagnetic directions from the western Ecstall pluton are not affected by reheating and are therefore likely to record original field conditions at the time of pluton emplacement. In the absence of structural deformation, these shallow inclinations are consistent with large-scale northward translation suggested by the Baja–British Columbia hypothesis

    Off-axis electron holography of bacterial cells and magnetic nanoparticles in liquid

    Get PDF
    The mapping of electrostatic potentials and magnetic fields in liquids usingelectron holography has been considered to be unrealistic. Here, we showthat hydrated cells ofMagnetospirillum magneticumstrain AMB-1 and assem-blies of magnetic nanoparticles can be studied using off-axis electronholography in a fluid cell specimen holder within the transmission electronmicroscope. Considering that the holographic object and reference waveboth pass through liquid, the recorded electron holograms show sufficientinterference fringe contrast to permit reconstruction of the phase shift ofthe electron wave and mapping of the magnetic induction from bacterialmagnetite nanocrystals. We assess the challenges of performingin situmagne-tization reversal experiments using a fluid cell specimen holder, discussapproaches for improving spatial resolution and specimen stability, and outlinefuture perspectives for studying scientific phenomena, ranging from interpar-ticle interactions in liquids and electrical double layers at solid–liquidinterfaces to biomineralization and the mapping of electrostatic potentialsassociated with protein aggregation and folding

    Correlation between magnetic spin structure and the three-dimensional geometry in chemically synthesized nanoscale magnetite rings

    Get PDF
    The correlation between magnetic spin structure and geometry in nanoscale chemically synthesized Fe(3)O(4) rings has been investigated by transmission electron microscopy. We find primarily the flux closure vortex states but in rings with thickness variations, an effective stray field occurs. Using tomography, we determine the complete three-dimensional geometries of thicker rings. A direct correlation between the geometry and the magnetization which points out of plane in the thickest parts of the ring yielding an intermediate magnetic state between the vortex state and the tube state is found. The interaction between exchange coupled rings leads to antiparallel vortex states and extended onion states. (c) 2008 American Institute of Physics.Physics, AppliedSCI(E)EI2ARTICLE22null9

    Longitudinal domain wall formation in elongated assemblies of ferromagnetic nanoparticles

    Get PDF
    Through evaporation of dense colloids of ferromagnetic ~13 nm ε-Co particles onto carbon substrates, anisotropic magnetic dipolar interactions can support formation of elongated particle structures with aggregate thicknesses of 100–400 nm and lengths of up to some hundred microns. Lorenz microscopy and electron holography reveal collective magnetic ordering in these structures. However, in contrast to continuous ferromagnetic thin films of comparable dimensions, domain walls appear preferentially as longitudinal, i.e., oriented parallel to the long axis of the nanoparticle assemblies. We explain this unusual domain structure as the result of dipolar interactions and shape anisotropy, in the absence of inter-particle exchange coupling
    corecore