40 research outputs found

    Impacts of soil conditions and light availability on natural regeneration of Norway spruce Picea abies (L.) H. Karst. in low-elevation mountain forests

    Get PDF
    & Key message Natural regeneration of P. abies (L.) H. Karst. may reach high densities in lower mountain elevations. The highest densities were found in sites with moderate light availability, with low pH, and not near the riverbank. However, age-height classes differed in the predicted magnitude of response, but were consistent in response directions. Mosses and understory species typical of coniferous forests were positively correlated with regeneration density. & Context Norway spruce Picea abies (L.) H. Karst. in Central Europe is at risk under climate change scenarios, particularly in mountain regions. Little is known about the impact of environmental factors on the natural regeneration of P. abies in lowelevation mountain forests. & Aims We aimed to assess impacts of distance from the riverbank, soil pH, and light availability on natural P. abies regeneration. We hypothesized that (1) natural P. abiesregeneration would depend on light availability and soil pH and (2) there are understory plant species which may indicate the microsites suitable for natural regeneration of P. abies. & Methods The study was conducted in the Stołowe Mountains National Park (SW Poland, 600–800 m a.s.l.). We established 160 study plots (25 m2 ) for natural regeneration, light availability, soil pH, and understory vegetation assessment

    Drivers of treeline shift in different European mountains

    Get PDF
    A growing body of evidence suggests that processes of upward treeline expansion and shifts in vegetation zones may occur in response to climate change. However, such shifts can be limited by a variety of non-climatic factors, such as nutrient availability, soil conditions, landscape fragmentation and some species-specific traits. Many changes in species distributions have been observed, although no evidence of complete community replacement has been registered yet. Climatic signals are often confounded with the effects of human activity, for example, forest encroachment at the treeline owing to the coupled effect of climate change and highland pasture abandonment. Data on the treeline ecotone, barriers to the expected treeline or dominant tree species shifts due to climate and land use change, and their possible impacts on biodiversity in 11 mountain areas of interest, from Italy to Norway and from Spain to Bulgaria, are reported. We investigated the role of environmental conditions on treeline ecotone features with a focus on treeline shift. The results showed that treeline altitude and the altitudinal width of the treeline ecotone, as well as the significance of climatic and soil parameters as barriers against tree species shift, significantly decreased with increasing latitude. However, the largest part of the commonly observed variability in mountain vegetation near the treeline in Europe seems to be caused by geomorphological, geological, pedological and microclimatic variability in combination with different land use history and present socio-economic relation Vegetation zone shift · Climate change · Climate models · Treeline ecotone · European mountains · Ecosystem service
    corecore