68,470 research outputs found

    Biocontamination and particulate detection system

    Get PDF
    A method for determining the characteristics and amount of microscopic contaminants lodged on a photographed surface is disclosed. An image enhanced full color photographic negative and print are taken of the contaminated surface. Three black and white prints are developed subsequently from red, green and blue separation filter overlays of the color negative. Both the color and three monochromatic prints are then scanned to extract in digital form a profile of any contaminant possibly existing on the surface. The resulting profiles are electronically analyzed and compared with data already stored relating to known contaminants

    Annual Report: Urbanization Impacts on NH Streamwater Thermal Loading

    Get PDF

    Sentiment Analysis for Words and Fiction Characters From The Perspective of Computational (Neuro-)Poetics

    Get PDF
    Two computational studies provide different sentiment analyses for text segments (e.g., ‘fearful’ passages) and figures (e.g., ‘Voldemort’) from the Harry Potter books (Rowling, 1997 - 2007) based on a novel simple tool called SentiArt. The tool uses vector space models together with theory-guided, empirically validated label lists to compute the valence of each word in a text by locating its position in a 2d emotion potential space spanned by the > 2 million words of the vector space model. After testing the tool’s accuracy with empirical data from a neurocognitive study, it was applied to compute emotional figure profiles and personality figure profiles (inspired by the so-called ‚big five’ personality theory) for main characters from the book series. The results of comparative analyses using different machine-learning classifiers (e.g., AdaBoost, Neural Net) show that SentiArt performs very well in predicting the emotion potential of text passages. It also produces plausible predictions regarding the emotional and personality profile of fiction characters which are correctly identified on the basis of eight character features, and it achieves a good cross-validation accuracy in classifying 100 figures into ‘good’ vs. ‘bad’ ones. The results are discussed with regard to potential applications of SentiArt in digital literary, applied reading and neurocognitive poetics studies such as the quantification of the hybrid hero potential of figures

    Rapid purification of quantum systems by measuring in a feedback-controlled unbiased basis

    Get PDF
    Rapid-purification by feedback --- specifically, reducing the mean impurity faster than by measurement alone --- can be achieved by making the eigenbasis of the density matrix to be unbiased relative to the measurement basis. Here we further examine the protocol introduced by Combes and Jacobs [Phys.Rev.Lett. {\bf 96}, 010504 (2006)] involving continuous measurement of the observable JzJ_z for a DD-dimensional system. We rigorously re-derive the lower bound (2/3)(D+1)(2/3)(D+1) on the achievable speed-up factor, and also an upper bound, namely D2/2D^2/2, for all feedback protocols that use measurements in unbiased bases. Finally we extend our results to nn independent measurements on a register of nn qubits, and derive an upper bound on the achievable speed-up factor that scales linearly with nn.Comment: v2: published versio

    Temporal Variability Corrections for Advanced Microwave Scanning Radiometer E (AMSR-E) Surface Soil Moisture: Case Study in Little River Region, Georgia, U.S.

    Get PDF
    Statistical correction methods, the Cumulative Distribution Function (CDF) matching technique and Regional Statistics Method (RSM) are applied to adjust the limited temporal variability of Advanced Microwave Scanning Radiometer E (AMSR-E) data using the Common Land Model (CLM). The temporal variability adjustment between CLM and AMSR-E data was conducted for annual and seasonal periods for 2003 in the Little River region, GA. The results showed that the statistical correction techniques improved AMSR-E’s limited temporal variability as compared to ground-based measurements. The regression slope and intercept improved from 0.210 and 0.112 up to 0.971 and -0.005 for the non-growing season. The R2 values also modestly improved. The Moderate Resolution Imaging Spectroradiometer (MODIS) Leaf Area Index (LAI) products were able to identify periods having an attenuated microwave brightness signal that are not likely to benefit from these statistical correction techniques

    Computing the Affective-Aesthetic Potential of Literary Texts

    Get PDF
    In this paper, we compute the affective-aesthetic potential (AAP) of literary texts by using a simple sentiment analysis tool called SentiArt. In contrast to other established tools, SentiArt is based on publicly available vector space models (VSMs) and requires no emotional dictionary, thus making it applicable in any language for which VSMs have been made available (>150 so far) and avoiding issues of low coverage. In a first study, the AAP values of all words of a widely used lexical databank for German were computed and the VSM’s ability in representing concrete and more abstract semantic concepts was demonstrated. In a second study, SentiArt was used to predict ~2800 human word valence ratings and shown to have a high predictive accuracy (R2 > 0.5, p < 0.0001). A third study tested the validity of SentiArt in predicting emotional states over (narrative) time using human liking ratings from reading a story. Again, the predictive accuracy was highly significant: R2adj = 0.46, p < 0.0001, establishing the SentiArt tool as a promising candidate for lexical sentiment analyses at both the micro- and macrolevels, i.e., short and long literary materials. Possibilities and limitations of lexical VSM-based sentiment analyses of diverse complex literary texts are discussed in the light of these results
    corecore