7,337 research outputs found

    Inelastic light scattering and the excited states of many-electron quantum dots

    Full text link
    A consistent calculation of resonant inelastic (Raman) scattering amplitudes for relatively large quantum dots, which takes account of valence-band mixing, discrete character of the spectrum in intermediate and final states, and interference effects, is presented. Raman peaks in charge and spin channels are compared with multipole strengths and with the density of energy levels in final states. A qualitative comparison with the available experimental results is given.Comment: 5 pages, accepted in J. Phys.: Condens. Matte

    Long-lived optical phonons in ZnO studied with impulsive stimulated Raman scattering

    Full text link
    The anharmonic properties of the low-frequency E2 phonon in ZnO were measured using impulsive stimulated Raman scattering. At 5 K, the frequency and lifetime are (2.9787 +/- 0.0002) THz and (211 +/- 7) ps. The unusually long lifetime and the high accuracy in the determination of the frequency hold promise for applications in metrology, quantum computation and materials characterization. The temperature dependence of the lifetime is determined by two-phonon up-conversion decay contributions, which vanish at zero temperature. Results suggest that the lifetime is limited by isotopic disorder and that values in the nanosecond range may be achievable in isotopically-pure samples

    Floral enhancement of arable field margins increases moth abundance and diversity

    Get PDF
    Moth populations have declined across large parts of north-western Europe since the mid-20th century due, in part, to agricultural intensification. Agri-environment schemes (AES) are widely implemented across Europe to protect biodiversity in agricultural landscapes. Grass field margins enriched with wildflowers typically out-perform grass-only margins in terms of increasing insect abundance and diversity. However, the effect of wildflower enrichment on moths remains largely unstudied. Here, the relative importance of larval hostplants and nectar resources for adult moths within AES field margins are investigated. Two treatments and a control were compared: (i) a plain grass mix, the control, (ii) a grass mix enriched with only moth-pollinated flowers, and (iii) a grass mix enriched with 13 wildflower species. Abundance, species richness and Shannon diversity were up to 1.4, 1.8 and 3.5 times higher, respectively, in the wildflower treatment compared to plain grass. The difference in diversity between treatments became greater in the second year. There was no difference in total abundance, richness or diversity between the plain grass treatment and grass enriched with moth-pollinated flowers. The increase in abundance and diversity in the wildflower treatment was due primarily to the provision of larval hostplants, with nectar provision playing a smaller role. The relative abundance of species whose larval hostplants included sown wildflowers increased in the second year, suggesting colonisation of the new habitat. Implications for insect conservation. We show that, at the farm scale, moth diversity can be greatly enhanced and abundance moderately enhanced by sowing diverse wildflower margins, providing these insects with both larval hostplants and floral resources, compared to grass-only margins

    Ground-State Electromagnetic Moments of Calcium Isotopes

    Get PDF
    High-resolution bunched-beam collinear laser spectroscopy was used to measure the optical hyperfine spectra of the 4351^{43-51}Ca isotopes. The ground state magnetic moments of 49,51^{49,51}Ca and quadrupole moments of 47,49,51^{47,49,51}Ca were measured for the first time, and the 51^{51}Ca ground state spin I=3/2I=3/2 was determined in a model-independent way. Our results provide a critical test of modern nuclear theories based on shell-model calculations using phenomenological as well as microscopic interactions. The results for the neutron-rich isotopes are in excellent agreement with predictions using interactions derived from chiral effective field theory including three-nucleon forces, while lighter isotopes illustrate the presence of particle-hole excitations of the 40^{40}Ca core in their ground state.Comment: Accepted as a Rapid Communication in Physical Review

    Role of Heme and Heme-Proteins in Trypanosomatid Essential Metabolic Pathways

    Get PDF
    Around the world, trypanosomatids are known for being etiological agents of several highly disabling and often fatal diseases like Chagas disease (Trypanosoma cruzi), leishmaniasis (Leishmania spp.), and African trypanosomiasis (Trypanosoma brucei). Throughout their life cycle, they must cope with diverse environmental conditions, and the mechanisms involved in these processes are crucial for their survival. In this review, we describe the role of heme in several essential metabolic pathways of these protozoans. Notwithstanding trypanosomatids lack of the complete heme biosynthetic pathway, we focus our discussion in the metabolic role played for important heme-proteins, like cytochromes. Although several genes for different types of cytochromes, involved in mitochondrial respiration, polyunsaturated fatty acid metabolism, and sterol biosynthesis, are annotated at the Tritryp Genome Project, the encoded proteins have not yet been deeply studied. We pointed our attention into relevant aspects of these protein functions that are amenable to be considered for rational design of trypanocidal agents

    Time course of muscle activation, energetics and mechanics of running in minimalist and traditional cushioned shoes during level running.

    Get PDF
    The study aimed to compare the ankle muscles activation, biomechanics and energetics of running in male runners during submaximal level run using minimalist (MinRS) and traditional cushioned (TrdRS) running shoes. During 45-min running in MinRS and TrdRS, the ankle muscles pre- and co-activation, biomechanics, and energetics of running of 16 male endurance runners (25.5 ± 3.5 yr) were assessed using surface electromyography (tibialis anterior and gastrocnemius lateralis), instrumented treadmill and indirect calorimetry, respectively. The net energy cost of running (C <sub>r</sub> ) was similar for both conditions (P = 0.25) with a significant increase over time (P < 0.0001). Step frequency (P < 0.001), and total mechanical work (P = 0.001) were significantly higher in MinRS than in TrdRS with no evolution over time (P = 0.28 and P = 0.85, respectively). The ankle muscles pre- and co-activation during the contact phase did not differ between the two shoe conditions (P ≥ 0.33) or over time (P ≥ 0.15). In conclusion, during 45-min running, Cr and muscle pre- and co-activation were not significantly different between MinRS and TrdRS with significantly higher step frequency and total mechanical work noted in the former than in the latter. Moreover, C <sub>r</sub> significantly increased during the 45-min trial in both shoe conditions along with no significant change over time in muscle activation and biomechanical variables
    corecore