286 research outputs found

    Spatiotemporal evolution of radio wave pump-induced ionospheric phenomena near the fourth electron gyroharmonic

    Get PDF
    On 12 November 2001, the European Incoherent Scatter (EISCAT) high-frequency (HF) radio wave transmitter facility, operating in O-mode at 5.423 MHz with 550 MW effective radiated power, produced artificial optical rings which appeared immediately at transmitter turn-on and collapsed into blobs after ∼60 s while descending in altitude. A similar descent in altitude was observed in the EISCAT ultra high frequency (UHF) ion line enhancements. Likewise, the stimulated electromagnetic emission (SEE) spectra changed as the pump frequency approached the fourth electron gyroharmonic due to pump-induced variations in electron concentration. Optical recordings were made from Skibotn at 630.0 and 557.7 nm and from Ramfjord in white light. The altitude of the initial optical ring and steady state blob has been estimated by triangulation. The evolution in altitude of the optical emissions, ion line enhancements, and SEE spectra all show a similar morphology but are generally not at exactly the same height. Typically, the optical height is close to and a few kilometers below that of the radar backscatter but sometimes above it, both of which are above the SEE generation altitude. There is evidence that upper hybrid (UH) waves, which propagate perpendicular to the magnetic field line, and Langmuir (L) waves, which propagate parallel to the magnetic field line, act simultaneously to accelerate electrons even in the steady state

    Combined EISCAT radar and optical multispectral and tomographic observations of black aurora

    Get PDF
    Black auroras are recognized as spatially well-defined regions within a uniform diffuse auroral background where the optical emission is significantly reduced. Black auroras typically appear post-magnetic midnight and during the substorm recovery phase, but not exclusively so. We report on the first combined multimonochromatic optical imaging, bistatic white-light TV recordings and incoherent scatter radar observations of black aurora by EISCAT of the phenomenon. From the relatively larger reduction in luminosity at 4278 Å than at 8446 Å we show that nonsheared black auroras are most probably not caused by downward directed electrical fields at low altitude. From the observations, we determine this by relating the height and intensity of the black aurora to precipitating particle energy within the surrounding background diffuse aurora. The observations are more consistent with an energy selective loss cone. Hence the mechanism causing black aurora is most probably active in the magnetosphere rather than close to Earth

    Identification of clouds and aurorae in optical data images

    Get PDF
    In this paper we present an automatic image recognition technique used to identify clouds and aurorae in digital images, taken with a CCD all-sky imager. The image recognition algorithm uses image segmentation to generate a binary block object image. Object analysis is then performed on the binary block image, the results of which are used to assess whether clouds, aurorae and stars are present in the original image. The need for such an algorithm arises because the optical study of particle precipitation into the Earth's atmosphere by the Ionosphere and Radio Propagation Group at Lancaster generates vast data-sets, over 25 000 images/year, making manual classification of all the images impractical

    Spatial sampling of the thermospheric vertical wind field at auroral latitudes

    Get PDF
    Results are presented from two nights of bistatic Doppler measurements of neutral thermospheric winds using Fabry!Perot spectrometers at Mawson and Davis stations in Antarctica. A scanning Doppler imager (SDI) at Mawson and a narrow-field Fabry-Perot spectrometer (FPS) at Davis have been used to estimate the vertical wind at three locations along the great circle joining the two stations, in addition to the vertical wind routinely observed above each station. These data were obtained from observations of the 630.0 nm airglow line of atomic oxygen, at a nominal altitude of 240 km. Low!resolution all-sky images produced by the Mawson SDI have been used to relate disturbances in the measured vertical wind field to auroral activity and divergence in the horizontal wind field. Correlated vertical wind responses were observed on a range of horizontal scales from ~150 to 480 km. In general, the behavior of the vertical wind was in agreement with earlier studies, with strong upward winds observed poleward of the optical aurora and sustained, though weak, downward winds observed early in the night. The relation between vertical wind and horizontal divergence was seen to follow the general trend predicted by Burnside et al. (1981), whereby upward vertical winds were associated with positive divergence and vice versa; however, a scale height approximately 3–4 times greater than that modeled by NRLMSISE-00 was required to best fit the data using this relation
    corecore