7,911 research outputs found

    Attractions between charged colloids at water interfaces

    Full text link
    The effective potential between charged colloids trapped at water interfaces is analyzed. It consists of a repulsive electrostatic and an attractive capillary part which asymptotically both show dipole--like behavior. For sufficiently large colloid charges, the capillary attraction dominates at large separations. The total effective potential exhibits a minimum at intermediate separations if the Debye screening length of water and the colloid radius are of comparable size.Comment: 8 pages, 1 figure, revised version (one paragraph added) accepted in JPC

    Comment on ``Periodic wave functions and number of extended states in random dimer systems'

    Get PDF
    There are no periodic wave-functions in the RDM but close to the critical energies there exist periodic envelopes. These envelopes are given by the non-disordered properties of the system.Comment: RevTex file, 1 page, Comment X. Huang, X. Wu and C. Gong, Phys. Rev. B 55, 11018 (1997

    Linear analysis of the influence of FIR feedback filters on the response of the pulsed digital oscillator

    Get PDF
    The original publication is available at www.springerlink.comThe objective of this work is to extend the linear analysis of PulsedDigitalOscillators to those topologies having a Finite Impulse Response (FIR) in the feedback loop of the circuit. It will be shown with two specific examples how the overall response of the oscillator can be adjusted to some point by changing the feedback filter, when the resonator presents heavy damping losses. Extensive discrete-time simulations and experimental results obtained with a MEMS cantilever with thermoelectric actuation and piezoresistive position sensing are presented. It will be experimentally shown that the performance of the oscillator is good even below the Nyquist limit

    Distinct magnetic signatures of fractional vortex configurations in multiband superconductors

    Get PDF
    Vortices carrying fractions of a flux quantum are predicted to exist in multiband superconductors, where vortex core can split between multiple band-specific components of the superconducting condensate. Using the two-component Ginzburg-Landau model, we examine such vortex configurations in a two-band superconducting slab in parallel magnetic field. The fractional vortices appear due to the band-selective vortex penetration caused by different thresholds for vortex entry within each band-condensate, and stabilize near the edges of the sample. We show that the resulting fractional vortex configurations leave distinct fingerprints in the static measurements of the magnetization, as well as in ac dynamic measurements of the magnetic susceptibility, both of which can be readily used for the detection of these fascinating vortex states in several existing multiband superconductors.Comment: 5 pages, 4 figure
    • …
    corecore