50 research outputs found

    Photoionization in the time and frequency domain

    Full text link
    Ultrafast processes in matter, such as the electron emission following light absorption, can now be studied using ultrashort light pulses of attosecond duration (101810^{-18}s) in the extreme ultraviolet spectral range. The lack of spectral resolution due to the use of short light pulses may raise serious issues in the interpretation of the experimental results and the comparison with detailed theoretical calculations. Here, we determine photoionization time delays in neon atoms over a 40 eV energy range with an interferometric technique combining high temporal and spectral resolution. We spectrally disentangle direct ionization from ionization with shake up, where a second electron is left in an excited state, thus obtaining excellent agreement with theoretical calculations and thereby solving a puzzle raised by seven-year-old measurements. Our experimental approach does not have conceptual limits, allowing us to foresee, with the help of upcoming laser technology, ultra-high resolution time-frequency studies from the visible to the x-ray range.Comment: 5 pages, 4 figure

    Attosecond timing of electron emission from a molecular shape resonance

    Full text link
    Shape resonances in physics and chemistry arise from the spatial confinement of a particle by a potential barrier. In molecular photoionization, these barriers prevent the electron from escaping instantaneously, so that nuclei may move and modify the potential, thereby affecting the ionization process. By using an attosecond two-color interferometric approach in combination with high spectral resolution, we have captured the changes induced by the nuclear motion on the centrifugal barrier that sustains the well-known shape resonance in valence-ionized N2_2. We show that despite the nuclear motion altering the bond length by only 2%2\%, which leads to tiny changes in the potential barrier, the corresponding change in the ionization time can be as large as 200200 attoseconds. This result poses limits to the concept of instantaneous electronic transitions in molecules, which is at the basis of the Franck-Condon principle of molecular spectroscopy.Comment: 24 pages, 5 figure

    Boosting cross-border regions through better cross-border transport services. The European case

    Get PDF
    Cross-border regions are the laboratories of European integration. Daily interactions across European borders let citizens experience the benefits of the European Union (EU) internal market. Still, many border barriers continue to prevent individuals and organisations from exploiting the full-potential of European border regions and the benefits of a more integrated European territory. Amongst these barriers are the absence or inappropriate supply of cross-border public transport services. In this context, this paper presents potential policy tools to increase border permeability related to cross-border public transport as well as practical results from a few case-studies implemented across Europe.info:eu-repo/semantics/publishedVersio

    Low frequency of defective mismatch repair in a population-based series of upper urothelial carcinoma

    Get PDF
    BACKGROUND: Upper urothelial cancer (UUC), i.e. transitional cell carcinomas of the renal pelvis and the ureter, occur at an increased frequency in patients with hereditary nonpolyposis colorectal cancer (HNPCC). Defective mismatch repair (MMR) specifically characterizes HNPCC-associated tumors, but also occurs in subsets of some sporadic tumors, e.g. in gastrointestinal cancer and endometrial cancer. METHODS: We assessed the contribution of defective MMR to the development of UUC in a population-based series from the southern Swedish Cancer Registry, through microsatellite instability (MSI) analysis and immunohistochemical evaluation of expression of the MMR proteins MLH1, PMS2, MSH2, and MSH6. RESULTS: A MSI-high phenotype was identified in 9/216 (4%) successfully analyzed patients and a MSI-low phenotype in 5/216 (2%). Loss of MMR protein immunostaining was found in 11/216 (5%) tumors, and affected most commonly MSH2 and MSH6. CONCLUSION: This population-based series indicates that somatic MMR inactivation is a minor pathway in the development of UUC, but tumors that display defective MMR are, based on the immunohistochemical expression pattern, likely to be associated with HNPCC

    CHEK2 1100delC in patients with metachronous cancers of the breast and the colorectum

    Get PDF
    BACKGROUND: Development of multiple primary tumors is a hallmark of hereditary cancer. At least 1/10 of breast cancers and colorectal cancers occur because of heredity and recently the cell cycle kinase 2, CHEK2 1100delC allele has been identified at a particularly high frequency in families with hereditary breast and colorectal cancer. METHODS: We utilized the Southern Sweden population-based cancer registry to identify women with double primary breast and colorectal cancer and sequenced tumor material in order to assess the contribution of the CHEK2 1100delC to the development of such metachronous tumors. RESULTS: Among the 75 patients successfully analyzed, 2 (2.5%) carried the CHEK2 1100delC allele. which was not significantly different (p = 0.26) from the 1% (3/300) carriers identified in the control group. CONCLUSION: In summary, our data suggest that the CHEK2 1100delC is not a major cause of double primary breast and colorectal cancer in Sweden, which suggests that this patient group should not routinely be screened for the CHEK2 1100delC variant
    corecore