Shape resonances in physics and chemistry arise from the spatial confinement
of a particle by a potential barrier. In molecular photoionization, these
barriers prevent the electron from escaping instantaneously, so that nuclei may
move and modify the potential, thereby affecting the ionization process. By
using an attosecond two-color interferometric approach in combination with high
spectral resolution, we have captured the changes induced by the nuclear motion
on the centrifugal barrier that sustains the well-known shape resonance in
valence-ionized N2. We show that despite the nuclear motion altering the
bond length by only 2%, which leads to tiny changes in the potential
barrier, the corresponding change in the ionization time can be as large as
200 attoseconds. This result poses limits to the concept of instantaneous
electronic transitions in molecules, which is at the basis of the Franck-Condon
principle of molecular spectroscopy.Comment: 24 pages, 5 figure