453 research outputs found

    Age group differences in performance using diverse input modalities: insertion task evaluation

    Get PDF
    Novel input modalities such as touch, tangibles or gestures try to exploit human's innate skills rather than imposing new learning processes. However, no work has been reported that systematically evaluates how these interfaces influence users' performance, that is, assesses if one interface can be more or less appropriate for interaction regarding: (1) different age groups; and (2) different basic tasks, as content insertion or manipulation. This work presents itself as an exploratory evaluation about whether or not the users' efficiency is indeed influenced by different input modalities and age. We conducted a usability evaluation with 60 subjects to understand how different interfaces may influence the speed and accuracy of three specific age groups (children, young adults and older-adults) when dealing with a basic content insertion task. Four input modalities were considered to perform the task (keyboard, touch, tangibles and gestures) and the methodology was based on usability testing (speed, accuracy and user preference). Overall, results show that there is a statistically significant difference in speed of task completion between the age groups, and there may be indications that the type of interface that is used can indeed influence efficiency in insertion tasks, and not so much other factors like age. Also, the study raises new issues regarding the "old" mouse input versus the "new" input modalities.FCT – Fundação para a Ciência e a Tecnologia (SFRH/BD/81541/2011)COMPETE: POCI-01-0145- FEDER-007043 and FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/201

    Nanofiber fabrication in a temperature and humidity controlled environment for improved fibre consistency

    Get PDF
    To fabricate nanofibers with reproducible characteristics, an important demand for many applications, the effect of controlled atmospheric conditions on resulting electrospun cellulose acetate (CA) nanofibers was evaluated for temperature ranging 17.5 - 35°C and relative humidity ranging 20% - 70%. With the potential application of nanofibers in many industries, especially membrane and filter fabrication, their reproducible production must be established to ensure commercially viability.
Cellulose acetate (CA) solution (0.2 g/ml) in a solvent mixture of acetone/DMF/ethanol (2:2:1) was electrospun into nonwoven fibre mesh with the fibre diameter ranging from 150nm to 1µm.
The resulting nanofibers were observed and analyzed by scanning electron microscopy (SEM), showing a correlation of reducing average fibre diameter with increasing atmospheric temperature. A less pronounced correlation was seen with changes in relative humidity regarding fibre diameter, though it was shown that increased humidity reduced the effect of fibre beading yielding a more consistent, and therefore better quality of fibre fabrication.
Differential scanning calorimetry (DSC) studies observed lower melt enthalpies for finer CA nanofibers in the first heating cycle confirming the results gained from SEM analysis. From the conditions that were explored in this study the temperature and humidity that gave the most suitable fibre mats for a membrane purpose were 25.0°C and 50%RH due to the highest level of fibre diameter uniformity, the lowest level of beading while maintaining a low fibre diameter for increased surface area and increased pore size homogeneity. This study has highlighted the requirement to control the atmospheric conditions during the electrospinning process in order to fabricate reproducible fibre mats

    Development and characterisation of novel electrospun polylactic acid/tubular clay nanocomposites

    Get PDF
    A novel material formulation method of polylactic acid /tubular clay nanocomposites via electrospinning was introduced and the important processing parameters such as solution concentration, clay loading, material feed rate were particularly investigated. The hybrid fibre diameter, the clay dispersability and the thermal properties of such nanocomposites were then characterised by using the scanning electron microscopy, wide-angle X-ray diffraction and differential scanning calorimetry, respectively, to establish a fundamental structure–property relationship for the future application

    Claudin-1, -3 and -4 proteins and mRNA expression in benign and malignant breast lesions: a research study

    Get PDF
    INTRODUCTION: We compared levels of protein and mRNA expression of three members of the claudin (CLDN) family in malignant breast tumours and benign lesions. METHODS: Altogether, 56 sections from 52 surgically resected breast specimens were analyzed for CLDN1, CLDN3 and CLDN4 expression by immunohistochemistry. mRNA was also analyzed using real-time PCR in 17 of the 52 cases. RESULTS: CLDNs were rarely observed exclusively at tight junction structures. CLDN1 was present in the membrane of normal duct cells and in some of the cell membranes from ductal carcinoma in situ, and was frequently observed in eight out of nine areas of apocrine metaplasia, whereas invasive tumours were negative for CLDN1 or it was present in a scattered distribution among such tumour cells (in 36/39 malignant tumours). CLDN3 was present in 49 of the 56 sections and CLDN4 was present in all 56 tissue sections. However, CLDN4 was highly positive in normal epithelial cells and was decreased or absent in 17 out of 21 ductal carcinoma grade 1, in special types of breast carcinoma (mucinous, papillary, tubular) and in areas of apocrine metaplasia. CLDN1 mRNA was downregulated by 12-fold in the sample (tumour) group as compared with the control group using GAPDH as the reference gene. CLDN3 and CLDN4 mRNA exhibited no difference in expression between invasive tumours and surrounding tissue. CONCLUSIONS: The significant loss of CLDN1 protein in breast cancer cells suggests that CLDN1 may play a role in invasion and metastasis. The loss of CLDN4 expression in areas of apocrine metaplasia and in the majority of grade 1 invasive carcinomas also suggests a particular role for this protein in mammary glandular cell differentiation and carcinogenesis

    Enamel maturation: a brief background with implications for some enamel dysplasias

    Get PDF
    The maturation stage of enamel development begins once the final tissue thickness has been laid down. Maturation includes an initial transitional pre-stage during which morphology and function of the enamel organ cells change. When this is complete, maturation proper begins. Fully functional maturation stage cells are concerned with final proteolytic degradation and removal of secretory matrix components which are replaced by tissue fluid. Crystals, initiated during the secretory stage, then grow replacing the tissue fluid. Crystals grow in both width and thickness until crystals abut each other occupying most of the tissue volume i.e. full maturation. If this is not complete at eruption, a further post eruptive maturation can occur via mineral ions from the saliva. During maturation calcium and phosphate enter the tissue to facilitate crystal growth. Whether transport is entirely active or not is unclear. Ion transport is also not unidirectional and phosphate, for example, can diffuse out again especially during transition and early maturation. Fluoride and magnesium, selectively taken up at this stage can also diffuse both in an out of the tissue. Crystal growth can be compromised by excessive fluoride and by ingress of other exogenous molecules such as albumin and tetracycline. This may be exacerbated by the relatively long duration of this stage, 10 days or so in a rat incisor and up to several years in human teeth rendering this stage particularly vulnerable to ingress of foreign materials, incompletely mature enamel being the result

    HOCl-modified phosphatidylcholines induce apoptosis and redox imbalance in HUVEC-ST cells

    Get PDF
    Electrophilic attack of hypochlorous acid on unsaturated bonds of fatty acyl chains is known to result mostly in chlorinated products that show cytotoxicity to some cell lines and were found in biological systems exposed to HOCl. This study aimed to investigate more deeply the products and the mechanism underlying cytotoxicity of phospholipid-HOCl oxidation products, synthesized by the reaction of HOCl with 1-stearoyl-2-oleoyl-, 1-stearoyl-2-linoleoyl-, and 1-stearoyl-2-arachidonyl-phosphatidylcholine. Phospholipid chlorohydrins were found to be the most abundant among obtained products. HOCl-modified lipids were cytotoxic towards HUVEC-ST (endothelial cells), leading to a decrease of mitochondrial potential and an increase in the number of apoptotic cells. These effects were accompanied by an increase of the level of active caspase-3 and caspase-7, while the caspase-3/-7 inhibitor Ac-DEVD-CHO dramatically decreased the number of apoptotic cells. Phospholipid-HOCl oxidation products were shown to affect cell proliferation by a concentration-dependent cell cycle arrest in the G/G phase and activating redox sensitive p38 kinase. The redox imbalance observed in HUVEC-ST cells exposed to modified phosphatidylcholines was accompanied by an increase in ROS level, and a decrease in glutathione content and antioxidant capacity of cell extracts

    Coexpression Analysis of Tomato Genes and Experimental Verification of Coordinated Expression of Genes Found in a Functionally Enriched Coexpression Module

    Get PDF
    Gene-to-gene coexpression analysis is a powerful approach to infer the function of uncharacterized genes. Here, we report comprehensive identification of coexpression gene modules of tomato (Solanum lycopersicum) and experimental verification of coordinated expression of module member genes. On the basis of the gene-to-gene correlation coefficient calculated from 67 microarray hybridization data points, we performed a network-based analysis. This facilitated the identification of 199 coexpression modules. A gene ontology annotation search revealed that 75 out of the 199 modules are enriched with genes associated with common functional categories. To verify the coexpression relationships between module member genes, we focused on one module enriched with genes associated with the flavonoid biosynthetic pathway. A non-enzyme, non-transcription factor gene encoding a zinc finger protein in this module was overexpressed in S. lycopersicum cultivar Micro-Tom, and expression levels of flavonoid pathway genes were investigated. Flavonoid pathway genes included in the module were up-regulated in the plant overexpressing the zinc finger gene. This result demonstrates that coexpression modules, at least the ones identified in this study, represent actual transcriptional coordination between genes, and can facilitate the inference of tomato gene function

    Mechanical Properties of Glassy Polyethylene Nanofibers via Molecular Dynamics Simulations

    Get PDF
    The extent to which the intrinsic mechanical properties of polymer fibers depend on physical size has been a matter of dispute that is relevant to most nanofiber applications. Here, we report the elastic and plastic properties determined from molecular dynamics simulations of amorphous, glassy polymer nanofibers with diameter ranging from 3.7 to 17.7 nm. We find that, for a given temperature, the Young’s elastic modulus E decreases with fiber radius and can be as much as 52% lower than that of the corresponding bulk material. Poisson’s ratio ν of the polymer comprising these nanofibers was found to decrease from a value of 0.3 to 0.1 with decreasing fiber radius. Our findings also indicate that a small but finite stress exists on the simulated nanofibers prior to elongation, attributable to surface tension. When strained uniaxially up to a tensile strain of ε = 0.2 over the range of strain rates and temperatures considered, the nanofibers exhibit a yield stress σy between 40 and 72 MPa, which is not strongly dependent on fiber radius; this yield stress is approximately half that of the same polyethylene simulated in the amorphous bulk.DuPont MIT AllianceDuPont (Firm) (Young Professor Award

    Mechanisms of adverse effects of anti-VEGF therapy for cancer

    Get PDF
    Advances in understanding the role of vascular endothelial growth factor (VEGF) in normal physiology are giving insight into the basis of adverse effects attributed to the use of VEGF inhibitors in clinical oncology. These effects are typically downstream consequences of suppression of cellular signalling pathways important in the regulation and maintenance of the microvasculature. Downregulation of these pathways in normal organs can lead to vascular disturbances and even regression of blood vessels, which could be intensified by concurrent pathological conditions. These changes are generally manageable and pose less risk than the tumours being treated, but they highlight the properties shared by tumour vessels and the vasculature of normal organs
    • …
    corecore