948 research outputs found

    Testing the neutrality of matter by acoustic means in a spherical resonator

    Full text link
    New measurements to test the neutrality of matter by acoustic means are reported. The apparatus is based on a spherical capacitor filled with gaseous SF6_6 excited by an oscillating electric field. The apparatus has been calibrated measuring the electric polarizability. Assuming charge conservation in the β\beta decay of the neutron, the experiment gives a limit of ϵp-e11021\epsilon_\text{p-e}\lesssim1\cdot10^{-21} for the electron-proton charge difference, the same limit holding for the charge of the neutron. Previous measurements are critically reviewed and found incorrect: the present result is the best limit obtained with this technique

    Heterogeneous Diffusion in Highly Supercooled Liquids

    Full text link
    The diffusivity of tagged particles is demonstrated to be very heterogeneous on time scales comparable to or shorter than the α\alpha relaxation time τα\tau_{\alpha} (\cong the stress relaxation time) in a highly supercooled liquid via 3D molecular dynamics simulation. The particle motions in the relatively active regions dominantly contribute to the mean square displacement, giving rise to a diffusion constant systematically larger than the Einstein-Stokes value. The van Hove self-correlation function Gs(r,t)G_s(r,t) is shown to have a long distance tail which can be scaled in terms of r/t1/2r/t^{1/2} for t \ls 3\tau_{\alpha}. Its presence indicates heterogeneous diffusion in the active regions. However, the diffusion process eventually becomes homogeneous on time scales longer than the life time of the heterogeneity structure (3τα\sim 3 \tau_{\alpha}).Comment: 4 pages, 5 figure

    Dielectric and thermal relaxation in the energy landscape

    Full text link
    We derive an energy landscape interpretation of dielectric relaxation times in undercooled liquids, comparing it to the traditional Debye and Gemant-DiMarzio-Bishop pictures. The interaction between different local structural rearrangements in the energy landscape explains qualitatively the recently observed splitting of the flow process into an initial and a final stage. The initial mechanical relaxation stage is attributed to hopping processes, the final thermal or structural relaxation stage to the decay of the local double-well potentials. The energy landscape concept provides an explanation for the equality of thermal and dielectric relaxation times. The equality itself is once more demonstrated on the basis of literature data for salol.Comment: 7 pages, 3 figures, 41 references, Workshop Disordered Systems, Molveno 2006, submitted to Philosophical Magazin

    Contrasting organic aerosol particles from boreal and tropical forests during HUMPPA-COPEC-2010 and AMAZE-08 using coherent vibrational spectroscopy

    Get PDF
    We present the vibrational sum frequency generation spectra of organic particles collected in a boreal forest in Finland and a tropical forest in Brazil. These spectra are compared to those of secondary organic material produced in the Harvard Environmental Chamber. By comparing coherent vibrational spectra of a variety of terpene and olefin reference compounds, along with the secondary organic material synthesized in the environmental chamber, we show that submicron aerosol particles sampled in Southern Finland during HUMPPA-COPEC-2010 are composed to a large degree of material similar in chemical composition to synthetic α-pinene-derived material. For material collected in Brazil as part of AMAZE-08, the organic component is found to be chemically complex in the coarse mode but highly uniform in the fine mode. When combined with histogram analyses of the isoprene and monoterpene abundance recorded during the HUMPPA-COPEC-2010 and AMAZE-08 campaigns, the findings presented here indicate that if air is rich in monoterpenes, submicron-sized secondary aerosol particles that form under normal OH and O<sub>3</sub> concentration levels can be described in terms of their hydrocarbon content as being similar to α-pinene-derived model secondary organic aerosol particles. If the isoprene concentration dominates the chemical composition of organic compounds in forest air, then the hydrocarbon component of secondary organic material in the submicron size range is not simply well-represented by that of isoprene-derived model secondary organic aerosol particles but is more complex. Throughout the climate-relevant size range of the fine mode, however, we find that the chemical composition of the secondary organic particle material from such air is invariant with size, suggesting that the particle growth does not change the chemical composition of the hydrocarbon component of the particles in a significant way

    Experimental search for radiative decays of the pentaquark baryon \Theta^+(1540)

    Full text link
    The data on the reactions K^+Xe --> K^0 \gamma X and K^+Xe --> K^+ \gamma X, obtained with the bubble chamber DIANA, have been analyzed for possible radiative decays of the \Theta^+(1540) baryon: \Theta^+ --> K^0 p \gamma and \Theta^+ --> K^+ n \gamma. No signals have been observed, and we derive the upper limits \Gamma(\Theta^+ --> K^0 p \gamma) / \Gamma(\Theta^+ --> K^0 p) < 0.032 and \Gamma(\Theta^+ --> K^+ n \gamma) / \Gamma(\Theta^+ --> K^+ n) < 0.041 which, using our previous measurement of \Gamma(\Theta^+ --> KN) = (0.39+-0.10) MeV, translate to \Gamma(\Theta^+ --> K^0 p \gamma) < 8 keV and \Gamma(\Theta^+ --> K^+ n \gamma) < 11 keV at 90% confidence level. We have also measured the cross sections of K^+ -induced reactions involving emission of a neutral pion: \sigma(K^+n --> K^0 p \pi^0) = (68+-18) \mub and \sigma(K^+N --> K^+ N \pi^0) = (30+-8) \mub for incident K^+ momentum of 640 MeV.Comment: 8 page

    The Seven-sphere and its Kac-Moody Algebra

    Full text link
    We investigate the seven-sphere as a group-like manifold and its extension to a Kac-Moody-like algebra. Covariance properties and tensorial composition of spinors under S7S^7 are defined. The relation to Malcev algebras is established. The consequences for octonionic projective spaces are examined. Current algebras are formulated and their anomalies are derived, and shown to be unique (even regarding numerical coefficients) up to redefinitions of the currents. Nilpotency of the BRST operator is consistent with one particular expression in the class of (field-dependent) anomalies. A Sugawara construction is given.Comment: 22 pages. Macropackages used: phyzzx, epsf. Three epsf figure files appende

    High resolution study of the Lambda p final state interaction in the reaction p + p -> K+ + (Lambda p)

    Full text link
    The reaction pp -> K+ + (Lambda p) was measured at Tp=1.953 GeV and Theta = 0 deg with a high missing mass resolution in order to study the Lambda p final state interaction. The large final state enhancement near the Lambda p threshold can be described using the standard Jost-function approach. The singlet and triplet scattering lengths and effective ranges are deduced by fitting simultaneously the Lambda p invariant mass spectrum and the total cross section data of the free Lambda p scattering.Comment: submitted to Physics Letters B, 10 pages, 3 figure

    Evidence for a nuclear compartment of transcription and splicing located at chromosome domain boundaries

    Get PDF
    The nuclear topography of splicing snRNPs, mRNA transcripts and chromosome domains in various mammalian cell types are described. The visualization of splicing snRNPs, defined by the Sm antigen, and coiled bodies, revealed distinctly different distribution patterns in these cell types. Heat shock experiments confirmed that the distribution patterns also depend on physiological parameters. Using a combination of fluorescencein situ hybridization and immunodetection protocols, individual chromosome domains were visualized simultaneously with the Sm antigen or the transcript of an integrated human papilloma virus genome. Three-dimensional analysis of fluorescence-stained target regions was performed by confocal laser scanning microscopy. RNA transcripts and components of the splicing machinery were found to be generally excluded from the interior of the territories occupied by the individual chromosomes. Based on these findings we present a model for the functional compartmentalization of the cell nucleus. According to this model the space between chromosome domains, including the surface areas of these domains, defines a three-dimensional network-like compartment, termed the interchromosome domain (ICD) compartment, in which transcription and splicing of mRNA occurs

    Qweak: A Precision Measurement of the Proton's Weak Charge

    Full text link
    The Qweak experiment at Jefferson Lab aims to make a 4% measurement of the parity-violating asymmetry in elastic scattering at very low Q2Q^2 of a longitudinally polarized electron beam on a proton target. The experiment will measure the weak charge of the proton, and thus the weak mixing angle at low energy scale, providing a precision test of the Standard Model. Since the value of the weak mixing angle is approximately 1/4, the weak charge of the proton Qwp=14sin2θwQ_w^p = 1-4 \sin^2 \theta_w is suppressed in the Standard Model, making it especially sensitive to the value of the mixing angle and also to possible new physics. The experiment is approved to run at JLab, and the construction plan calls for the hardware to be ready to install in Hall C in 2007. The theoretical context of the experiment and the status of its design are discussed.Comment: 5 pages, 2 figures, LaTeX2e, to be published in CIPANP 2003 proceeding
    corecore