Abstract

We investigate the seven-sphere as a group-like manifold and its extension to a Kac-Moody-like algebra. Covariance properties and tensorial composition of spinors under S7S^7 are defined. The relation to Malcev algebras is established. The consequences for octonionic projective spaces are examined. Current algebras are formulated and their anomalies are derived, and shown to be unique (even regarding numerical coefficients) up to redefinitions of the currents. Nilpotency of the BRST operator is consistent with one particular expression in the class of (field-dependent) anomalies. A Sugawara construction is given.Comment: 22 pages. Macropackages used: phyzzx, epsf. Three epsf figure files appende

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 04/12/2019