14 research outputs found

    Trypanosome Lytic Factor, an Antimicrobial High-Density Lipoprotein, Ameliorates Leishmania Infection

    Get PDF
    Innate immunity is the first line of defense against invading microorganisms. Trypanosome Lytic Factor (TLF) is a minor sub-fraction of human high-density lipoprotein that provides innate immunity by completely protecting humans from infection by most species of African trypanosomes, which belong to the Kinetoplastida order. Herein, we demonstrate the broader protective effects of human TLF, which inhibits intracellular infection by Leishmania, a kinetoplastid that replicates in phagolysosomes of macrophages. We show that TLF accumulates within the parasitophorous vacuole of macrophages in vitro and reduces the number of Leishmania metacyclic promastigotes, but not amastigotes. We do not detect any activation of the macrophages by TLF in the presence or absence of Leishmania, and therefore propose that TLF directly damages the parasite in the acidic parasitophorous vacuole. To investigate the physiological relevance of this observation, we have reconstituted lytic activity in vivo by generating mice that express the two main protein components of TLFs: human apolipoprotein L-I and haptoglobin-related protein. Both proteins are expressed in mice at levels equivalent to those found in humans and circulate within high-density lipoproteins. We find that TLF mice can ameliorate an infection with Leishmania by significantly reducing the pathogen burden. In contrast, TLF mice were not protected against infection by the kinetoplastid Trypanosoma cruzi, which infects many cell types and transiently passes through a phagolysosome. We conclude that TLF not only determines species specificity for African trypanosomes, but can also ameliorate an infection with Leishmania, while having no effect on T. cruzi. We propose that TLFs are a component of the innate immune system that can limit infections by their ability to selectively damage pathogens in phagolysosomes within the reticuloendothelial system

    Antimicrobial Action of Copper Is Amplified via Inhibition of Heme Biosynthesis.

    Get PDF
    Copper (Cu) is a potent antimicrobial agent. Its use as a disinfectant goes back to antiquity, but this metal ion has recently emerged to have a physiological role in the host innate immune response. Recent studies have identified iron–sulfur containing proteins as key targets for inhibition by Cu. However, the way in these effects at the molecular level translate into a global effect on cell physiology is not fully understood. Here, we provide a new insight into the way in which Cu poisons bacteria. Using a copA mutant of the obligate human pathogen Neisseria gonorrhoeae that lacks a Cu efflux pump, we showed that Cu overloading led to an increased sensitivity to hydrogen peroxide. However, instead of promoting disproportionation of H2O2 via Fenton chemistry, Cu treatment led to an increased lifetime of H2O2 in cultures as a result of a marked decrease in catalase activity. We showed that this observation correlated with a loss of intracellular heme. We further established that Cu inhibited the pathway for heme biosynthesis. We proposed that this impaired ability to produce heme during Cu stress would lead to the failure to activate hemoproteins that participate in key processes, such as the detoxification of various reactive oxygen and nitrogen species, and aerobic respiration. The impact would be a global disruption of cellular biochemistry and an amplified Cu toxicity
    corecore