212 research outputs found

    Novel Crossover in Coupled Spin Ladders

    Get PDF
    We report a novel crossover behavior in the long-range-ordered phase of a prototypical spin-1/21/2 Heisenberg antiferromagnetic ladder compound (C7H10N)2CuBr4\mathrm{(C_7H_{10}N)_2CuBr_4}. The staggered order was previously evidenced from a continuous and symmetric splitting of 14^{14}N NMR spectral lines on lowering temperature below Tc≃330T_c\simeq 330 mK, with a saturation towards ≃150\simeq 150 mK. Unexpectedly, the split lines begin to further separate away below T∗∌100T^*\sim 100 mK while the line width and shape remain completely invariable. This crossover behavior is further corroborated by the NMR relaxation rate T1−1T_1^{-1} measurements. A very strong suppression reflecting the ordering, T1−1∌T5.5T_1^{-1}\sim T^{5.5}, observed above T∗T^*, is replaced by T1−1∌TT_1^{-1}\sim T below T∗T^*. These original NMR features are indicative of unconventional nature of the crossover, which may arise from a unique arrangement of the ladders into a spatially anisotropic and frustrated coupling network.Comment: 5 pages, 3 figure

    Field-induced magnetic behavior in quasi-one-dimensional Ising-like antiferromagnet BaCo2V2O8: A single-crystal neutron diffraction study

    Full text link
    BaCo2V2O8 is a nice example of a quasi-one-dimensional quantum spin system that can be described in terms of Tomonaga-Luttinger liquid physics. This is explored in the present study where the magnetic field-temperature phase diagram is thoroughly established up to 12 T using single-crystal neutron diffraction. The transition from the N\'eel phase to the incommensurate longitudinal spin density wave (LSDW) phase through a first-order transition, as well as the critical exponents associated with the paramagnetic to ordered phase transitions, and the magnetic order both in the N\'eel and in the LSDW phase are determined, thus providing a stringent test for the theory.Comment: 17 pages with 15 figure

    Spin Configuration in the 1/3 Magnetization Plateau of Azurite Determined by NMR

    Get PDF
    High magnetic field 63,65^{63,65}Cu NMR spectra were used to determine the local spin polarization in the 1/3 magnetization plateau of azurite, Cu3_3(CO3_3)2_2(OH)2_2, which is a model system for the distorted diamond antiferromagnetic spin-1/2 chain. The spin part of the hyperfine field of the Cu2 (dimer) sites is found to be field independent, negative and strongly anisotropic, corresponding to ≈\approx10 % of fully polarized spin in a dd-orbital. This is close to the expected configuration of the "quantum" plateau, where a singlet state is stabilized on the dimer. However, the observed non-zero spin polarization points to some triplet admixture, induced by strong asymmetry of the diamond bonds J1J_1 and J3J_3.Comment: Phys. Rev. Lett. 102, in press (2009

    Spatially Resolved Magnetization in the Bose-Einstein Condensed State of BaCuSi2O6: Evidence for Imperfect Frustration

    Full text link
    In order to understand the nature of the two-dimensional Bose-Einstein condensed (BEC) phase in BaCuSi2O6, we performed detailed 63Cu and 29Si NMR above the critical magnetic field, Hc1= 23.4 T. The two different alternating layers present in the system have very different local magnetizations close to Hc1; one is very weak, and its size and field dependence are highly sensitive to the nature of inter-layer coupling. Its precise value could only be determined by "on-site" 63Cu NMR, and the data are fully reproduced by a model of interacting hard-core bosons in which the perfect frustration associated to tetragonal symmetry is slightly lifted, leading to the conclusion that the population of the less populated layers is not fully incoherent but must be partially condensed

    Comment on ``Texture in the Superconducting Order Parameter of CeCoIn5_5 Revealed by Nuclear Magnetic Resonance''

    Full text link
    The study of the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state has been of considerable recent interest. Below the temperature T∗T^* which is believed to be the transition temperature (TT) to the FFLO phase in CeCoIn5_5, K. Kakuyanagi et al. (Phys. Rev. Lett. 94, 047602 (2005)) reported a composite NMR spectrum with a tiny component observed at frequencies corresponding to the normal state signal. The results were interpreted as evidence for the emergence of an FFLO state. This result is inconsistent with two other NMR studies of V. F. Mitrovi{\'c} et al. (Phys. Rev. Lett. 97, 117002 (2006)) and B.-L. Young et al. (Phys. Rev. Lett. 98, 036402 (2007)). In this comment we show that the findings of K. Kakuyanagi et al. do not reflect the true nature of the FFLO state but result from excess RF excitation power used in that experiment.Comment: 1 page, to appear in PR

    Incipient charge order observed by NMR in the normal state of YBa2Cu3Oy

    Full text link
    The pseudogap regime of high-temperature cuprates harbours diverse manifestations of electronic ordering whose exact nature and universality remain debated. Here, we show that the short-ranged charge order recently reported in the normal state of YBa2Cu3Oy corresponds to a truly static modulation of the charge density. We also show that this modulation impacts on most electronic properties, that it appears jointly with intra-unit-cell nematic, but not magnetic, order, and that it exhibits differences with the charge density wave observed at lower temperatures in high magnetic fields. These observations prove mostly universal, they place new constraints on the origin of the charge density wave and they reveal that the charge modulation is pinned by native defects. Similarities with results in layered metals such as NbSe2, in which defects nucleate halos of incipient charge density wave at temperatures above the ordering transition, raise the possibility that order-parameter fluctuations, but no static order, would be observed in the normal state of most cuprates if disorder were absent.Comment: Updated version. Free download at Nature Comm. website (doi below

    Quantum-critical spin dynamics in quasi-one-dimensional antiferromagnets

    Get PDF
    By means of nuclear spin-lattice relaxation rate 1/T1, we follow the spin dynamics as a function of the applied magnetic field in two gapped one-dimensional quantum antiferromagnets: the anisotropic spin-chain system NiCl2-4SC(NH2)2 and the spin-ladder system (C5H12N)2CuBr4. In both systems, spin excitations are confirmed to evolve from magnons in the gapped state to spinons in the gapples Tomonaga-Luttinger-liquid state. In between, 1/T1 exhibits a pronounced, continuous variation, which is shown to scale in accordance with quantum criticality. We extract the critical exponent for 1/T1, compare it to the theory, and show that this behavior is identical in both studied systems, thus demonstrating the universality of quantum critical behavior

    Similar glassy features in the NMR response of pure and disordered La1.88Sr0.12CuO4

    Full text link
    High Tc superconductivity in La2-xSrxCuO4 coexists with (striped and glassy) magnetic order. Here, we report NMR measurements of the 139La spin-lattice relaxation, which displays a stretched-exponential time dependence, in both pure and disordered x=0.12 single crystals. An analysis in terms of a distribution of relaxation rates T1^-1 indicates that i) the spin-freezing temperature is spatially inhomogeneous with an onset at Tg(onset)=20 K for the pristine samples, and ii) the width of the T1^-1 distribution in the vicinity of Tg(onset) is insensitive to an ~1% level of atomic disorder in CuO2 planes. This suggests that the stretched-exponential 139La relaxation, considered as a manifestation of the systems glassiness, may not arise from quenched disorder.Comment: 7 pages, to be published in Phys. Rev.

    Phase Diagram of CeCoIn_5 in the Vicinity of H_{c2} as Determined by NMR

    Full text link
    We report ^{115}In nuclear magnetic resonance (NMR) measurements in the heavy-fermion superconductor CeCoIn_5 as a function of temperature in different magnetic fields applied parallel to the (a^,b^)(\hat a, \hat b) plane. The measurements probe a part of the phase diagram in the vicinity of the superconducting critical field H_{c2} where a possible inhomogeneous superconducting state, Fulde-Ferrel-Larkin-Ovchinnikov (FFLO), is stabilized. We have identified clear NMR signatures of two phase transitions occurring in this part of the phase diagram. The first order phase transitions are characterized by the sizable discontinuity of the shift. We find that a continuous second order phase transition from the superconducting to the FFLO state occurs at temperature below which the shift becomes temperature independent. We have compiled the first phase diagram of CeCoIn_5 in the vicinity of H_{c2} from NMR data and found that it is in agreement with the one determined by thermodynamic measurements.Comment: 4 pages, submitted to Proceedings of SCES'0
    • 

    corecore