108 research outputs found

    Surface Morphology and Strain Relief in Surfactant Mediated Growth of Germanium on Silicon (111)

    Get PDF
    The growth of Ge on Si is strongly modified by adsorbates called surfactants. The relevance of the stress on surface morphology and the growth mode of Ge on Si(111) is presented in a detailed in situ study by high resolution low energy electron diffraction (LEED) during the deposition. The change from islanding to layer-by-layer growth mode is seen in the oscillatory intensity behaviour of the 00-spot. As a strain relief mechanism, the Ge-film forms a microscopic rough surface of small triangular and defect-free pyramids in the pseudomorphic growth regime up to 8 monolayers. As soon as the pyramids are completed and start to coalesce, strain relieving defects are created at their base, finally arranging to the dislocation network. Without the driving force for the micro-roughness, the stress, the surface flattens again showing a much larger terrace length. The formation process of the dislocation network results in a spot splitting in LEED, since the periodic dislocations at the interface give rise to elastic deformation of the surface. Surprisingly the Ge-film is relaxed to 70% immediately after 8 monolayers of coverage, which is attributed to the micro rough surface morphology, providing innumerous nucleation sites for dislocation

    Violation of Boltzmann Equipartition Theorem in Angular Phonon Phase Space Slows down Nanoscale Heat Transfer in Ultrathin Heterofilms

    Get PDF
    Heat transfer through heterointerfaces is intrinsically hampered by a thermal boundary resistance originating from the discontinuity of the elastic properties. Here, we show that with shrinking dimensions the heat flow from an ultrathin epitaxial film through atomically flat interfaces into a single crystalline substrate is significantly reduced due to violation of Boltzmann equipartition theorem in the angular phonon phase space. For films thinner than the phonons mean free path, we find phonons trapped in the film by total internal reflection, thus suppressing heat transfer. Repopulation of those phonon states, which can escape the film through the interface by transmission and refraction, becomes the bottleneck for cooling. The resulting nonequipartition in the angular phonon phase space slows down the cooling by more than a factor of 2 compared to films governed by phonons diffuse scattering. These allow tailoring of the thermal interface conductance via manipulation of the interface

    Electron phonon coupling in ultrathin Pb films on Si(111): Where the heck is the energy?

    Full text link
    In this work, we study the heat transfer from electron to phonon system within a five monolayer thin epitaxial Pb film on Si(111) upon fs-laser excitation. The response of the electron system is determined using time-resolved photoelectron spectroscopy while the lattice excitation is measured by means of the Debye-Waller effect in time-resolved reflection high-energy electron diffraction. The electrons lose their heat within 0.5 ps while the lattice temperature rises slowly in 3.5 to 8 ps, leaving a gap of 3-7 ps. We propose that the hidden energy is transiently stored in high-frequency phonon modes for which diffraction is insensitive and which are excited in 0.5 ps. Within a three-temperature model we use three heat baths, namely electrons, high-frequency and low-frequency phonon modes to simulate the observations. The excitation of low-frequency acoustic phonons, i.e., thermalization of the lattice is facilitated through anharmonic phonon-phonon interaction

    Non-Equilibrium Pathways for Excitation of Bulk and Surface Phonons through Anharmonic Coupling

    Full text link
    Upon impulsive optical excitation of solid-state materials, the non-equilibrium flow of energy from the excited electronic system to the lattice degrees of freedom typically happens in a few picoseconds. Here we identified the surface of thin Bi films grown on Si(001) as an additional subsystem which is excited much slower on a 100 ps timescale that is caused by decoupling due to mismatched phonon dispersions relations of bulk and surface. Anharmonic coupling among the phonon systems provides pathways for excitations which exhibits a 1/T-dependence causing a speed-up of surface excitation at higher temperatures. A quantitative justification is provided by phonon Umklapp processes from lattice thermal conductivity of the Bi bulk. Three-temperature model simulations reveal a pronounced non-equilibrium situation up to nanoseconds: initially, the surface is colder than the bulk, that situation is then inverted during cooling and the surface feeds energy back into the bulk phonon system

    Selecting a single orientation for millimeter sized graphene sheets

    Get PDF
    We have used Low Energy Electron Microscopy (LEEM) and Photo Emission Electron Microscopy (PEEM) to study and improve the quality of graphene films grown on Ir(111) using chemical vapor deposition (CVD). CVD at elevated temperature already yields graphene sheets that are uniform and of monatomic thickness. Besides domains that are aligned with respect to the substrate, other rotational variants grow. Cyclic growth exploiting the faster growth and etch rates of the rotational variants, yields films that are 99 % composed of aligned domains. Precovering the substrate with a high density of graphene nuclei prior to CVD yields pure films of aligned domains extending over millimeters. Such films can be used to prepare cluster-graphene hybrid materials for catalysis or nanomagnetism and can potentially be combined with lift-off techniques to yield high-quality, graphene based electronic devices

    Electron and lattice structure of ultra thin Ag films on Si(111) and Si(001)

    Full text link
    We studied the low temperature (T<130K) growth of Ag on Si(001) and Si(111) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (root3xroot3)R30^o LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(111)(root3xroot3)R30^o Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (root3xroot3)R30^o Ag flat terraces in between. On Si(001) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(001)2x1 with a twinned Ag(111) structure at coverages as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(100) surfaces has been studied as a function of temperature (40-300 K).Comment: 12 pages, 9 figure
    corecore