156 research outputs found

    X-ray bright points and He I lambda 10830 dark points

    Get PDF
    Using near-simultaneous full disk Solar X-ray images and He I 10830 lambda, spectroheliograms from three recent rocket flights, dark points identified on the He I maps were compared with X-ray bright points identified on the X-ray images. It was found that for the largest and most obvious features there is a strong correlation: most He I dark points correspond to X-ray bright points. However, about 2/3 of the X-ray bright points were not identified on the basis of the helium data alone. Once an X-ray feature is identified it is almost always possible to find an underlying dark patch of enhanced He I absorption which, however, would not a priori have been selected as a dark point. Therefore, the He I dark points, using current selection criteria, cannot be used as a one-to-one proxy for the X-ray data. He I dark points do, however, identify the locations of the stronger X-ray bright points

    Magnetic Field Effects on the Head Structure of Protostellar Jets

    Get PDF
    We present the results of 3-D SPMHD numerical simulations of supermagnetosonic, overdense, radiatively cooling jets. Two initial magnetic configurations are considered: (i) a helical and (ii) a longitudinal field. We find that magnetic fields have important effects on the dynamics and structure of radiative cooling jets, especially at the head. The presence of a helical field suppresses the formation of the clumpy structure which is found to develop at the head of purely hydrodynamical jets. On the other hand, a cooling jet embedded in a longitudinal magnetic field retains clumpy morphology at its head. This fragmented structure resembles the knotty pattern commonly observed in HH objects behind the bow shocks of HH jets. This suggests that a strong (equipartition) helical magnetic field configuration is ruled out at the jet head. Therefore, if strong magnetic fields are present, they are probably predominantly longitudinal in those regions. In both magnetic configurations, we find that the confining pressure of the cocoon is able to excite short-wavelength MHD K-H pinch modes that drive low-amplitude internal shocks along the beam. These shocks are not strong however, and it likely that they could only play a secondary role in the formation of the bright knots observed in HH jets.Comment: 14 pages, 2 Gif figures, uses aasms4.sty. Also available on the web page http://www.iagusp.usp.br/preprints/preprint.html. To appear in The Astrophysical Journal Letter

    Conservative formulations of general relativistic kinetic theory

    Get PDF
    Experience with core-collapse supernova simulations shows that accurate accounting of total particle number and 4-momentum can be a challenge for computational radiative transfer. This accurate accounting would be facilitated by the use of particle number and 4-momentum transport equations that allow transparent conversion between volume and surface integrals in both configuration and momentum space. Such conservative formulations of general relativistic kinetic theory in multiple spatial dimensions are presented in this paper, and their relevance to core-collapse supernova simulations is described.Comment: 48 page

    On the minimum and maximum mass of neutron stars and the delayed collapse

    Get PDF
    The minimum and maximum mass of protoneutron stars and neutron stars are investigated. The hot dense matter is described by relativistic (including hyperons) and non-relativistic equations of state. We show that the minimum mass (∌\sim 0.88 - 1.28 M_{\sun}) of a neutron star is determined by the earliest stage of its evolution and is nearly unaffected by the presence of hyperons. The maximum mass of a neutron star is limited by the protoneutron star or hot neutron star stage. Further we find that the delayed collapse of a neutron star into a black hole during deleptonization is not only possible for equations of state with softening components, as for instance, hyperons, meson condensates etc., but also for neutron stars with a pure nucleonic-leptonic equation of state.Comment: 6 pages, 4 figures, using EDP Siences Latex A&A style, to be published in A&

    Core-Collapse Supernovae at the Threshold

    Full text link
    Recent progress in modeling core-collapse supernovae is summarized and set in perspective. Two-dimensional simulations with state-of-the-art treatment of neutrino transport still fail to produce powerful explosions, but evidence is presented that they are very close to success.Comment: 8 pages, 3 figures, high-quality available upon request; contribution to Procs. IAU Coll. 192, "Supernovae", Eds. J.M. Marcaide ad K.W. Weiler, Springe

    Asymmetric neutrino emission due to neutrino-nucleon scatterings in supernova magnetic fields

    Full text link
    We derive the cross section of neutrino-nucleon scatterings in supernova magnetic fields, including weak-magnetism and recoil corrections. Since the weak interaction violates the parity, the scattering cross section asymmetrically depends on the directions of the neutrino momenta to the magnetic field; the origin of pulsar kicks may be explained by the mechanism. An asymmetric neutrino emission (a drift flux) due to neutrino-nucleon scatterings is absent at the leading level of O(ÎŒBB/T)\mathcal O(\mu_BB/T), where ÎŒB\mu_B is the nucleon magneton, BB is the magnetic field strength, and TT is the matter temperature at a neutrinosphere. This is because at this level the drift flux of the neutrinos are exactly canceled by that of the antineutrinos. Hence, the relevant asymmetry in the neutrino emission is suppressed by much smaller coefficient of O(ÎŒBB/m)\mathcal O(\mu_BB/m), where mm is the nucleon mass; detailed form of the relevant drift flux is also derived from the scattering cross section, using a simple diffusion approximation. It appears that the asymmetric neutrino emission is too small to induce the observed pulsar kicks. However, we note the fact that the drift flux is proportional to the deviation of the neutrino distribution function from the value of thermal equilibrium at neutrinosphere. Since the deviation can be large for non-electron neutrinos, it is expected that there occurs cancellation between the deviation and the small suppression factor of O(ÎŒBB/m)\mathcal O(\mu_BB/m). Using a simple parameterization, we show that the drift flux due to neutrino-nucleon scatterings may be comparable to the leading term due to beta processes with nucleons, which has been estimated to give a relevant kick velocity when the magnetic field is sufficiently strong as 101510^{15}--101610^{16} G.Comment: 19 pages, 1 figure. Accepted by Physical Review

    Two-dimensional hydrodynamic core-collapse supernova simulations with spectral neutrino transport. I. Numerical method and results for a 15 M_sun star

    Full text link
    Supernova models with a full spectral treatment of the neutrino transport are presented, employing the Prometheus/Vertex neutrino-hydrodynamics code with a ``ray-by-ray plus'' approximation for treating two- (or three-) dimensional problems. The method is described in detail and critically assessed with respect to its capabilities, limitations, and inaccuracies in the context of supernova simulations. In this first paper of a series, 1D and 2D core-collapse calculations for a (nonrotating) 15 M_sun star are discussed, uncertainties in the treatment of the equation of state -- numerical and physical -- are tested, Newtonian results are compared with simulations using a general relativistic potential, bremsstrahlung and interactions of neutrinos of different flavors are investigated, and the standard approximation in neutrino-nucleon interactions with zero energy transfer is replaced by rates that include corrections due to nucleon recoil, thermal motions, weak magnetism, and nucleon correlations. Models with the full implementation of the ``ray-by-ray plus'' spectral transport were found not to explode, neither in spherical symmetry nor in 2D with a 90 degree lateral wedge. The success of previous 2D simulations with grey, flux-limited neutrino diffusion can therefore not be confirmed. Omitting the radial velocity terms in the neutrino momentum equation leads to ``artificial'' explosions by increasing the neutrino energy density in the convective gain layer by about 20--30% and thus the integral neutrino energy deposition in this region by about a factor of two. (abbreviated)Comment: 46 pages plus 13 pages online material; 49 figures; referee's comments included, version accepted by Astronomy & Astrophysic

    The Neutrino Signal in Stellar Core Collapse and Postbounce Evolution

    Get PDF
    General relativistic multi-group and multi-flavor Boltzmann neutrino transport in spherical symmetry adds a new level of detail to the numerical bridge between microscopic nuclear and weak interaction physics and the macroscopic evolution of the astrophysical object. Although no supernova explosions are obtained, we investigate the neutrino luminosities in various phases of the postbounce evolution for a wide range of progenitor stars between 13 and 40 solar masses. The signal probes the dynamics of material layered in and around the protoneutron star and is, within narrow limits, sensitive to improvements in the weak interaction physics. Only changes that dramatically exceed physical limitations allow experiments with exploding models. We discuss the differences in the neutrino signal and find the electron fraction in the innermost ejecta to exceed 0.5 as a consequence of thermal balance and weak equilibrium at the masscut.Comment: 8 pages, 4 figures. Proceedings of the Nuclear Physics in Astrophysics Conference, Debrecen, Hungary, 2002, to appear in Nuc. Phys. A. Color figures added and reference actualize

    Can a supernova be located by its neutrinos?

    Get PDF
    A future core-collapse supernova in our Galaxy will be detected by several neutrino detectors around the world. The neutrinos escape from the supernova core over several seconds from the time of collapse, unlike the electromagnetic radiation, emitted from the envelope, which is delayed by a time of order hours. In addition, the electromagnetic radiation can be obscured by dust in the intervening interstellar space. The question therefore arises whether a supernova can be located by its neutrinos alone. The early warning of a supernova and its location might allow greatly improved astronomical observations. The theme of the present work is a careful and realistic assessment of this question, taking into account the statistical significance of the various neutrino signals. Not surprisingly, neutrino-electron forward scattering leads to a good determination of the supernova direction, even in the presence of the large and nearly isotropic background from other reactions. Even with the most pessimistic background assumptions, SuperKamiokande (SK) and the Sudbury Neutrino Observatory (SNO) can restrict the supernova direction to be within circles of radius 5∘5^\circ and 20∘20^\circ, respectively. Other reactions with more events but weaker angular dependence are much less useful for locating the supernova. Finally, there is the oft-discussed possibility of triangulation, i.e., determination of the supernova direction based on an arrival time delay between different detectors. Given the expected statistics we show that, contrary to previous estimates, this technique does not allow a good determination of the supernova direction.Comment: 11 pages including 2 figures. Revised version corrects typos, adds some brief comment
    • 

    corecore