General relativistic multi-group and multi-flavor Boltzmann neutrino
transport in spherical symmetry adds a new level of detail to the numerical
bridge between microscopic nuclear and weak interaction physics and the
macroscopic evolution of the astrophysical object. Although no supernova
explosions are obtained, we investigate the neutrino luminosities in various
phases of the postbounce evolution for a wide range of progenitor stars between
13 and 40 solar masses. The signal probes the dynamics of material layered in
and around the protoneutron star and is, within narrow limits, sensitive to
improvements in the weak interaction physics. Only changes that dramatically
exceed physical limitations allow experiments with exploding models. We discuss
the differences in the neutrino signal and find the electron fraction in the
innermost ejecta to exceed 0.5 as a consequence of thermal balance and weak
equilibrium at the masscut.Comment: 8 pages, 4 figures. Proceedings of the Nuclear Physics in
Astrophysics Conference, Debrecen, Hungary, 2002, to appear in Nuc. Phys. A.
Color figures added and reference actualize