1,023 research outputs found

    Light aircraft sound transmission study

    Get PDF
    The revived interest in the design of propeller driven aircraft is based on increasing fuel prices as well as on the need for bigger short haul and commuter aircraft. A major problem encountered with propeller driven aircraft is propeller and exhaust noise that is transmitted through the fuselage sidewall structure. Part of the work which was conducted during the period April 1 to August 31, 1983, on the studies of sound transmission through light aircraft walls is presented

    Microbubble shape oscillations excited through ultrasonic parametric driving\ud

    Get PDF
    An air bubble driven by ultrasound can become shape-unstable through a parametric instability. We report time-resolved optical observations of shape oscillations (mode n=2 to 6) of micron-sized single air bubbles. The observed mode number n was found to be linearly related to the ambient radius of the bubble. Above the critical driving pressure threshold for shape oscillations, which is minimal at the resonance of the volumetric radial mode, the observed mode number n is independent of the forcing pressure amplitude. The microbubble shape oscillations were also analyzed numerically by introducing a small nonspherical linear perturbation to a Rayleigh-Plesset-type equation, capturing the experimental observations in detail.\ud \u

    Sensible Heat Observations Reveal Soil-Water Evaporation Dynamics

    Get PDF
    Soil-water evaporation is important at scales ranging from microbial ecology to large-scale climate. Yet routine measurements are unable to capture rapidly shifting near-surface soil heat and water processes involved in soil-water evaporation. The objective of this study was to determine the depth and location of the evaporation zone within soil. Three-needle heat-pulse sensors were used to monitor soil heat capacity, thermal conductivity, and temperature below a bare soil surface in central Iowa during natural wetting/drying cycles. Soil heat flux and changes in heat storage were calculated from these data to obtain a balance of sensible heat components. The residual from this balance, attributed to latent heat from water vaporization, provides an estimate of in situ soil-water evaporation. As the soil dried following rainfall, results show divergence in the soil sensible heat flux with depth. Divergence in the heat flux indicates the location of a heat sink associated with soil-water evaporation. Evaporation estimates from the sensible heat balance provide depth and time patterns consistent with observed soil-water depletion patterns. Immediately after rainfall, evaporation occurred near the soil surface. Within 6 days after rainfall, the evaporation zone proceeded \u3e 13 mm into the soil profile. Evaporation rates at the 3-mm depth reached peak values \u3e 0.25 mm h−1. Evaporation occurred simultaneously at multiple measured depth increments, but with time lag between peak evaporation rates for depths deeper below the soil surface. Implementation of finescale measurement techniques for the soil sensible heat balance provides a new opportunity to improve understanding of soil-water evaporation

    Evaluation of a new, perforated heat flux plate design

    Get PDF
    Accurate measurement of heat flux is essential to optimize structural and process design and to improve understanding of energy transfer in natural systems. Laboratory and field experiments evaluated the performance of a new, perforated heat flux plate designed to reduce flow distortion for environmental applications. Laboratory tests involving dry and saturated sand showed that performance of the new CAPTEC plate is comparable to a solid, standard REBS plate. Very low thermal gradients may have however led to poor performance of the CAPTEC plate in saturated sand. Water infiltration and redistribution experiments using clayey and sandy soils showed an apparent reduced disruption of liquid water and vapour in the soil surrounding the CAPTEC plate as compared to solid Hukseflux and standard REBS plates. Surface area of REBS plate, though smaller than that of CAPTEC, did not lead to any significantly improved evaporation, due to perforations on CAPTEC plate. Field tests in a loam soil indicated that the CAPTEC plates were durable and produced daily total flux values within ~ 0.15 MJ m− 2 of independent estimates

    Editorial overview of Pearls Microbiome Series: E pluribus unum

    Get PDF
    The human microbiome constitutes the collection of all the microorganisms living in association with the human body with each body site being home to a unique microbial community. Human-associated microbial communities can include eukaryotes, archaea, bacteria, and viruses and provide protection against foreign invaders, stimulate the immune response, produce antimicrobials, and aid in digestion among other functions. Our understanding of the link between the human microbiome and disease is rapidly expanding in large part due to revolutionizing advances in next generation sequencing. In fact, an ever-growing number of studies have demonstrated that changes in the composition of our microbiomes correlate with numerous disease states or responses to treatment. However, understanding the impact of shifts in microbial communities on health and disease and the mechanisms that confer stability in the microbiome have been challenging to elucidate, due to the vast microbial diversity and differences between individuals. Nevertheless, the notion that manipulation of microbial communities may provide prophylactic or therapeutic tools to improve human health has been the focus of much research. Here, we highlight a collection of Pearls articles delving into the current state of knowledge linking the microbiome to human disease

    Phycomyces MADB interacts with MADA to form the primary photoreceptor complex for fungal phototropism

    Get PDF
    The fungus Phycomyces blakesleeanus reacts to environmental signals, including light, gravity, touch, and the presence of nearby objects, by changing the speed and direction of growth of its fruiting body (sporangiophore). Phototropism, growth toward light, shares many features in fungi and plants but the molecular mechanisms remain to be fully elucidated. Phycomyces mutants with altered phototropism were isolated ≈40 years ago and found to have mutations in the mad genes. All of the responses to light in Phycomyces require the products of the madA and madB genes. We showed that madA encodes a protein similar to the Neurospora blue-light photoreceptor, zinc-finger protein WC-1. We show here that madB encodes a protein similar to the Neurospora zinc-finger protein WC-2. MADA and MADB interact to form a complex in yeast 2-hybrid assays and when coexpressed in E. coli, providing evidence that phototropism and other responses to light are mediated by a photoresponsive transcription factor complex. The Phycomyces genome contains 3 genes similar to wc-1, and 4 genes similar to wc-2, many of which are regulated by light in a madA or madB dependent manner. We did not detect any interactions between additional WC proteins in yeast 2-hybrid assays, which suggest that MADA and MADB form the major photoreceptor complex in Phycomyces. However, the presence of multiple wc genes in Phycomyces may enable perception across a broad range of light intensities, and may provide specialized photoreceptors for distinct photoresponses

    First Reported Case of Cryptococcus gattii in the Southeastern USA: Implications for Travel-Associated Acquisition of an Emerging Pathogen

    Get PDF
    In 2007, the first confirmed case of Cryptococcus gattii was reported in the state of North Carolina, USA. An otherwise healthy HIV negative male patient presented with a large upper thigh cryptococcoma in February, which was surgically removed and the patient was started on long-term high-dose fluconazole treatment. In May of 2007, the patient presented to the Duke University hospital emergency room with seizures. Magnetic resonance imaging revealed two large CNS lesions found to be cryptococcomas based on brain biopsy. Prior chest CT imaging had revealed small lung nodules indicating that C. gattii spores or desiccated yeast were likely inhaled into the lungs and dissemination occurred to both the leg and CNS. The patient's travel history included a visit throughout the San Francisco, CA region in September through October of 2006, consistent with acquisition during this time period. Cultures from both the leg and brain biopsies were subjected to analysis. Based on phenotypic and molecular methods, both isolates were C. gattii, VGI molecular type, and distinct from the Vancouver Island outbreak isolates. Based on multilocus sequence typing of coding and noncoding regions and virulence in a heterologous host model, the leg and brain isolates are identical, but the two differed in mating fertility. Two clinical isolates, one from a transplant recipient in San Francisco and the other from Australia, were identical to the North Carolina clinical isolate at all markers tested. Closely related isolates that differ at only one or a few noncoding markers are present in the Australian environment. Taken together, these findings support a model in which C. gattii VGI was transferred from Australia to California, possibly though an association with its common host plant E. camaldulensis, and the patient was exposed in San Francisco and returned to present with disease in North Carolina

    Adenylyl Cyclase Functions Downstream of the Gα Protein Gpa1 and Controls Mating and Pathogenicity of \u3ci\u3eCryptococcus neoformans\u3c/i\u3e

    Get PDF
    The signaling molecule cyclic AMP (cAMP) is a ubiquitous second messenger that enables cells to detect and respond to extracellular signals. cAMP is generated by the enzyme adenylyl cyclase, which is activated or inhibited by the Gα subunits of heterotrimeric G proteins in response to ligand-activated G-protein-coupled receptors. Here we identified the unique gene (CAC1) encoding adenylyl cyclase in the opportunistic fungal pathogen Cryptococcus neoformans. The CAC1 gene was disrupted by transformation and homologous recombination. In stark contrast to the situation for Saccharomyces cerevisiae, in which adenylyl cyclase is essential, C. neoformans cac1 mutant strains were viable and had no vegetative growth defect. Furthermore, cac1 mutants maintained the yeast-like morphology of wild-type cells, in contrast to the constitutively filamentous phenotype found upon the loss of adenylyl cyclase in another basidiomycete pathogen, Ustilago maydis. Like C. neoformans mutants lacking the Gα protein Gpa1, cac1 mutants were mating defective and failed to produce two inducible virulence factors: capsule and melanin. As a consequence, cac1 mutant strains were avirulent in animal models of cryptococcal meningitis. Reintroduction of the wild-type CAC1 gene or the addition of exogenous cAMP suppressed cac1 mutant phenotypes. Moreover, the overexpression of adenylyl cyclase restored mating and virulence factor production in gpa1 mutant strains. Physiological studies revealed that the Gα protein Gpa1 and adenylyl cyclase controlled cAMP production in response to glucose, and no cAMP was detectable in extracts from cac1 or gpa1 mutant strains. These findings provide direct evidence that Gpa1 and adenylyl cyclase function in a conserved signal transduction pathway controlling cAMP production, hyphal differentiation, and virulence of this human fungal pathogen

    Amoeba predation of <i>Cryptococcus</i>:A quantitative and population genomic evaluation of the accidental pathogen hypothesis

    Get PDF
    The “Amoeboid Predator-Fungal Animal Virulence Hypothesis” posits that interactions with environmental phagocytes shape the evolution of virulence traits in fungal pathogens. In this hypothesis, selection to avoid predation by amoeba inadvertently selects for traits that contribute to fungal escape from phagocytic immune cells. Here, we investigate this hypothesis in the human fungal pathogens Cryptococcus neoformans and Cryptococcus deneoformans. Applying quantitative trait locus (QTL) mapping and comparative genomics, we discovered a cross-species QTL region that is responsible for variation in resistance to amoeba predation. In C. neoformans, this same QTL was found to have pleiotropic effects on melanization, an established virulence factor. Through fine mapping and population genomic comparisons, we identified the gene encoding the transcription factor Bzp4 that underlies this pleiotropic QTL and we show that decreased expression of this gene reduces melanization and increases susceptibility to amoeba predation. Despite the joint effects of BZP4 on amoeba resistance and melanin production, we find no relationship between BZP4 genotype and escape from macrophages or virulence in murine models of disease. Our findings provide new perspectives on how microbial ecology shapes the genetic architecture of fungal virulence, and suggests the need for more nuanced models for the evolution of pathogenesis that account for the complexities of both microbe-microbe and microbe-host interactions
    corecore